Название | What We Cannot Know |
---|---|
Автор произведения | Marcus du Sautoy |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9780007576579 |
MATHEMATICAL SNAPSHOTS
The calculus tries to make sense of what at first sight looks like a meaningless sum: zero divided by zero. As I let my dice fall from my hand, it is such a sum that I must calculate if I want to try to understand the instantaneous speed of my dice as it falls through the air.
The speed of the dice is constantly increasing as gravity pulls it to the ground. So how can I calculate what the speed is at any given instance of time? For example, how fast is the dice falling after one second? Speed is distance travelled divided by time elapsed. So I could record the distance it drops in the next second and that would give me an average speed over that period. But I want the precise speed. I could record the distance travelled over a shorter period of time, say half a second or a quarter of a second. The smaller the interval of time, the more accurately I will be calculating the speed. Ultimately, to get the precise speed I want to take an interval of time that is infinitesimally small. But then I am faced with calculating 0 divided by 0.
Calculus: making sense of zero divided by zero
Suppose that a car starts from a stationary position. When the stopwatch starts, the driver slams his foot on the accelerator. Suppose that we record that after t seconds the driver has covered t × t metres. How fast is the car going after 10 seconds? We get an approximation of the speed by looking at how far the car has travelled in the period from 10 to 11 seconds. The average speed during this second is (11 × 11 – 10 × 10)/1 = 21 metres per second.
But if we look at a smaller window of time, say the average speed over 0.5 seconds, we get:
(10.5 × 10.5 – 10 × 10)/0.5 = 20.5 metres per second.
Slightly slower, of course, because the car is accelerating, so on average it is going faster in the second half second from 10 seconds to 11 seconds. But now we take an even smaller snapshot. What about halving the window of time again:
(10.25 × 10.25 – 10 × 10)/0.25 = 20.25 metres per second.
Hopefully the mathematician in you has spotted the pattern. If I take a window of time which is x seconds, the average speed over this time will be 20 + x metres per second. The speed as I take smaller and smaller windows of time is getting closer and closer to 20 metres per second. So, although to calculate the speed at 10 seconds looks like I have to figure out the calculation 0⁄0, the calculus makes sense of what this should mean.
Newton’s calculus made sense of this calculation. He understood how to calculate what the speed was tending towards as I make the time interval smaller and smaller. It was a revolutionary new language that managed to capture a changing dynamic world. The geometry of the ancient Greeks was perfect for a static, frozen picture of the world. Newton’s mathematical breakthrough was the language that could describe a moving world. Mathematics had gone from describing a still life to capturing a moving image. It was the scientific equivalent of how the dynamic art of the Baroque burst forth during this period from the static art of the Renaissance.
Newton looked back at this time as one of the most productive of his life, calling it his annus mirabilis. ‘I was in the prime of my age for invention and minded Mathematicks and Philosophy more than at any time since.’
Everything around us is in a state of flux, so it was no wonder that this mathematics would be so influential. But for Newton the calculus was a personal tool that helped him reach the scientific conclusions that he documents in the Principia, the great treatise published in 1687 that describes his ideas on gravity and the laws of motion.
Writing in the third person, he explains that his calculus was key to the scientific discoveries contained inside: ‘By the help of this new Analysis Mr Newton found out most of the propositions in the Principia.’ But no account of the ‘new analysis’ is published. Instead, he privately circulated the ideas among friends, but they were not ideas that he felt any urge to publish for others to appreciate.
Fortunately this language is now widely available and it is one that I spent years learning as a mathematical apprentice. But in order to attempt to know my dice I am going to need to mix Newton’s mathematical breakthrough with his great contribution to physics: the famous laws of motion with which he opens his Principia.
THE RULES OF THE GAME
Newton explains in the Principia three simple laws from which so much of the dynamics of the universe evolve.
Newton’s First Law of Motion: A body will continue in a state of rest or uniform motion in a straight line unless it is compelled to change that state by forces acting on it.
This was not so obvious to the likes of Aristotle. If you roll a ball along a flat surface it comes to rest. It looks like you need a force to keep it moving. There is, however, a hidden force that is changing the speed: friction. If I throw my dice in outer space away from any gravitational fields then the dice will indeed just carry on flying in a straight line at constant speed.
In order to change an object’s speed or direction you needed a force. Newton’s second law explained how that force would change the motion, and it entailed the new tool he’d developed to articulate change. The calculus has already allowed me to articulate what speed my dice is going at as it accelerates down towards the table. The rate of change of that speed is got by applying calculus again. The second law of Newton says that there is a direct relationship between the force being applied and the rate of change of the speed.
Newton’s Second Law of Motion: The rate of change of motion, or acceleration, is proportional to the force that is acting on it and inversely proportional to its mass.
To understand the motion of bodies like my cascading dice I need to understand the possible forces acting on them. Newton’s universal law of gravitation identified one of the principal forces that had an effect on, say, his apple falling or the planets moving through the solar system. The law states that the force acting on a body of mass m1 by another body of mass m2 which is a distance of r away is equal to
where G is an empirical physical constant that controls how strong gravity is in our universe.
With these laws I can now describe the trajectory of a ball flying through the air, or a planet through the solar system, or my dice falling from my hand. But the next problem occurs when the dice hits the table. What happens then? Newton has a third law which provides a clue:
Newton’s Third Law of Motion: When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction to that of the first body.
Newton himself used these laws to deduce an extraordinary string of results about the solar system. As he wrote: ‘I now demonstrate the system of the World.’ To apply his ideas to the trajectory of the planets he began by reducing each planet to a point located at the centre of mass and assumed that all the planet’s mass was concentrated at this point. Then by applying his laws of motion and his new mathematics he successfully deduced Kepler’s laws of planetary motion.
He was also able to calculate the relative masses for the large planets, the Earth and the Sun. He explained a number of the curious irregularities in the motion of the Moon due to the pull of the Sun. He also deduced that the Earth isn’t a perfect sphere but should be squashed between the poles due to the Earth’s rotation causing a centrifugal force. The French thought the opposite would happen: that the Earth should be pointy in the direction of the poles. An expedition set out in 1733 which proved Newton – and the power of mathematics – correct.
NEWTON’S THEORY OF EVERYTHING
It