Название | Инвестиционная оценка. Инструменты и методы оценки любых активов |
---|---|
Автор произведения | Асват Дамодаран |
Жанр | Ценные бумаги, инвестиции |
Серия | |
Издательство | Ценные бумаги, инвестиции |
Год выпуска | 2008 |
isbn | 978-5-9614-0802-7 |
Поскольку ковариация рыночного портфеля с самим собой является его дисперсией, бета рыночного портфеля (как и его среднего актива) равна 1. Активы, чья рискованность выше среднего уровня (если использовать эту меру риска), будут иметь коэффициент бета выше единицы, а активы, которые безопаснее среднего уровня, будут обладать бетой менее единицы. У безрисковых активов коэффициент бета равен нулю.
Получение ожидаемых доходов. Факт удержания каждым инвестором некоторой комбинации безрискового актива и рыночного портфеля приводит к заключению, что ожидаемый доход на актив линейно зависит от беты актива. В частности, ожидаемый доход на актив можно записать как функцию безрисковой ставки и беты этого актива:
E(Ri) = Rf + Pi [E(Rm)-Rf],
где E(Ri) = ожидаемая доходность актива i;
Rf = безрисковая ставка;
E(Rm) = ожидаемая доходность на рыночный портфель;
Pi = коэффициент бета актива i.
Для использования модели оценки финансовых активов нам необходимо иметь три входные величины. Следующая глава будет посвящена детальному разбору процесса оценки, поэтому пока только заметим, что каждая из этих входных величин оценивается следующим образом:
• Безрисковый актив определяется как актив, относительно которого инвестору с абсолютной определенностью известна ожидаемая доходность для временного горизонта анализа.
• Премия за риск является премией, запрашиваемой инвесторами за инвестирование в рыночный портфель, включающий все рисковые активы на рынке, вместо инвестирования в безрисковый актив.
• Коэффициент бета, который определяется как ковариация актива, поделенная на дисперсию рыночного портфеля, измеряет риск, добавляемый инвестицией к рыночному портфелю.
Таким образом, в модели оценки финансовых активов весь рыночный риск охватывается одним коэффициентом бета, измеренным по отношению к рыночному портфелю, который, хотя бы теоретически, должен содержать все обращающиеся на рынке активы пропорционально их рыночной стоимости.
Модель арбитражной оценки. Ограничивающие предположения, касающиеся транзакционных издержек и получения информации в модели оценки финансовых активов, а также зависимость модели от рыночного портфеля на протяжении длительного времени воспринимались академическими кругами и специалистами-практиками со скептицизмом. Росс (Ross, 1976) предложил альтернативную модель для измерения риска, которая называется моделью арбитражной оценки (arbitrage pricing model – APM).
Предположения. Если инвесторы могут инвестировать без риска и зарабатывать больше, чем по безрисковой ставке, то это означает, что они нашли возможность арбитража