Название | Caries Management - Science and Clinical Practice |
---|---|
Автор произведения | Группа авторов |
Жанр | Медицина |
Серия | |
Издательство | Медицина |
Год выпуска | 0 |
isbn | 9783131693815 |
Fig. 1.19a–c Schematic illustration of the relation between acid (H+), pH drop, and the interaction of the buffers in the saliva.
Fig. 1.20 Schematic diagram showing the relationship between pH drop after sugar in-take (arrow) and the function of saliva with stimulation, without stimulation, and in hyposalivation. It appears that with stimulation the pH returns much faster to its normal level.
REFERENCES
1. Cole AS, Eastoe JE. Biochemistry and Oral Biology. Bristol: John Wright and Sons; 1977
2. Geddes DA. Acids produced by human dental plaque metabolism in situ. Caries Res 1975;9(2):98–109
3. Carlsen O. Dental Morphology. Copenhagen: Munksgaard; 1987
4. Krogh-Poulsen W. Tændernes morfologi. 3rd ed. Copenhagen: Munksgaard; 1967
5. Schour I, Massler M. Studies in tooth development. The growth patterns of human teeth. J Am Dent Assoc 1940;27:1778–1793, 1918–1931
6. Lysell L, Magnusson B, Thilander B. Time and order of eruption of the primary teeth. A longitudinal study. Odontol Revy 1962;13: 217–234
7. Kurol J, Rasmussen P. Occlusal development, preventive and interceptive orthodontics. In: Koch G, Poulsen S, eds. Pediatric Dentistry. Copenhagen: Munksgaard; 2001:321–349
8. Helm S, Seidler B. Timing of permanent tooth emergence in Danish children. Community Dent Oral Epidemiol 1974;2(3): 122–129
9. Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J Dent Res 1989;68(5):773–779
10. Ekstrand KR, Martignon S, Christiansen ME. Frequency and distribution patterns of sealants among 15-year-olds in Denmark in 2003. Community Dent Health 2007;24(1):26–30
11. Nielsen LA. Cariesprogression i det primære tandsæt fra 3-til 7 års-alderen. Tandlaegebladet 2001;105:704–711
12. Mjør IA, Fejerskov O, eds. Human Oral Embryology and Histology. Copenhagen: Munksgaard; 1986
13. Wang L, Guan X, Yin H, Moradian-Oldak J, Nancollas GH. Mimicking the self-organized microstructure of tooth enamel. J Phys Chem C Nanomater Interfaces 2008;112(15):5892–5899
14. Young RA. Implications of atomic substitutions and other structural details in apatites. J Dent Res 1974;53(2):193–203
15. Larsen MJ. Dissolution of enamel. Scand J Dent Res 1973;81(7): 518–522
16. Ten Cate JM, Featherstone JDB. Physicochemical aspects of fluoride-enamel interactions. In: Fejerskov O, Ekstrand J, Burt BA, eds. Fluoride in Dentistry. Copenhagen: Munksgaard; 1996: 252–272
17. Shellis RP, Duckworth RM. Studies on the cariostatic mechanisms of fluoride. Int Dent J 1994; 44(3, Suppl 1)263–273
18. Fejerskov O, Josephsen K, Nyvad B. Surface ultrastructure of unerupted mature human enamel. Caries Res 1984;18(4): 302–314
19. Ekstrand K, Holmen L, Qvortrup K. A polarized light and scanning electron microscopic study of human fissure and lingual enamel of unerupted mandibular third molars. Caries Res 1999;33(1): 41–49
20. Ferguson DB. The salivary glands and their secretions. In: Ferguson DB, ed. Oral Bioscience. Edinburgh: Churchill Livingstone; 1999:118–150
21. Bardow A, Hofer E, Nyvad B, et al. Effect of saliva composition on experimental root caries. Caries Res 2005;39(1):71–77
22. Dawes C. The effects of flow rate and duration of stimulation on the condentrations of protein and the main electrolytes in human parotid saliva. Arch Oral Biol 1969;14(3):277–294
23. Dawes C. The effects of flow rate and duration of stimulation on the concentrations of protein and the main electrolytes in human submandibular saliva. Arch Oral Biol 1974;19(10):887–895
24. Dawes C. Factors influencing salivary flow rate and composition. In: Edgar M, Dawes C, O'Mullane D, eds. Saliva and Oral Health. London: BDJ Books; 2004:32–49
25. Moreno EC, Varughese K, Hay DI. Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif Tissue Int 1979;28(1):7–16
26. Lendenmann U, Grogan J, Oppenheim FG. Saliva and dental pellicle—a review. Adv Dent Res 2000;14:22–28
27. Zahradnik RT, Moreno EC, Burke EJ. Effect of salivary pellicle on enamel subsurface demineralization in vitro. J Dent Res 1976; 55(4):664–670
28. Nederfors T. Xerostomia and hyposalivation. Adv Dent Res 2000;14:48–56
29. Bardow A, Lagerlöf F, Nauntofte B, et al. The role of saliva. In: Fejerskov O, Kidd E, eds. Dental Caries. The Disease and its Clinical Management. Oxford: Blackwell Munksgaard; 2008: 190–207
30. Brudevold F. Aldersforandringer I tandnemaljen. Nor Tandlægeforen Tid 1957;67:451–458
31. Mjør IA. Changes in the teeth with aging. In: Holm-Pedersen P, Löe H, eds. Textbook of Geriatric Dentistry. Copenhagen: Munksgaard; 1996:94–102
32. Scott J. Degenerative changes in the histology of the human submandibular salivary gland occurring with age. J Biol Buccale 1977;5(4):311–319
33. Baum BJ. Changes in salivary glands and salivary secretion with aging. In: Holm-Pedersen P, Löe H, eds. Textbook of Geriatric Dentistry. Copenhagen: Munksgaard; 1996:117–126
34. Marsh PD, Martin M. Oral microbiology. 3rd ed. London: Chapman and Hall; 1992
35. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994;8(2):263–271
36. Sibley CG, Ahlquist JE. The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 1984;20(1): 2–15
37. Smith M. Nobel lecture. Synthetic DNA and biology. Biosci Rep 1994;14(2):51–66
38. de Soet JJ, Nyvad B, Kilian M. Strain-related acid production by oral streptococci. Caries Res 2000;34(6):486–490
39. Gibbons RJ. Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res 1989;68(5):750–760
40. Nyvad B, Kilian M. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 1987;95(5):369–380
41. Thylstrup A, Bruun C, Holmen L. In vivo caries models—mechanisms for caries initiation and arrestment. Adv Dent Res 1994; 8(2):144–157
42.