Физика повседневности. От мыльных пузырей до квантовых технологий. Жак Виллен

Читать онлайн.
Название Физика повседневности. От мыльных пузырей до квантовых технологий
Автор произведения Жак Виллен
Жанр Физика
Серия
Издательство Физика
Год выпуска 2014
isbn 978-5-0013-9340-5



Скачать книгу

поворачивается, и маятник для него отклоняется к западу (вспомните: для нас Солнце встает на востоке и движется по небосклону на запад. На самом же деле, как мы сегодня хорошо знаем, это земной шар вращается на восток, а Солнце остается почти неподвижным).

      Из нашего рассуждения понятно, что на Южном полюсе маятник отклонится к востоку. На полюсе плоскость колебаний маятника выполняет полный оборот за 24 часа[1]. В Париже же этот процесс занимает значительно больше времени. Разберемся почему.

      Сила Кориолиса

      Представлять наблюдателя, неподвижного по отношению к звездам, чтобы понять, что видит его коллега, вращающийся вместе с Землей, неудобно. Проще было бы рассуждать только с точки зрения земного наблюдателя, предполагая, что на шар воздействует некая сила, которая заставляет его отклоняться к западу… И мы действительно можем так поступить! Для этого нужно рассматривать движение маятника Фуко в системе координат, или системе отсчета, связанной с Землей. Чтобы учесть вращение Земли вокруг своей оси, следует принять, что на шар, помимо сил веса и реакции нити (подвеса), воздействует еще одна сила. Ее назвали силой Кориолиса в честь французского математика Гаспара-Гюстава де Кориолиса (илл. 3).

      3. Гаспар-Гюстав де Кориолис (1792–1843). Одно из немногих известных его изображений выполнено французским художником Бельяром по портрету кисти Роллера. Имя Кориолиса увековечено гравюрой на первом этаже Эйфелевой башни, наряду с еще 71 ученым

      Чтобы двигаться дальше, давайте пока оставим в стороне маятник Фуко, колебания которого усложняют необходимые для дальнейшего рассуждения, и вместо него рассмотрим пулю массой m, выпущенную из ружья. Чтобы еще больше облегчить задачу, предположим, что пуля движется по прямой линии, и мы при изучении ее траектории учитываем только влияние вращения Земли. Это предположение является всего лишь искусственным приемом для упрощения дальнейших рассуждений.

      Представим, что стрелок находится на Северном полюсе, в точке N (илл. 4), и выпускает в направлении цели C, движущейся вместе с Землей, пулю P с начальной скоростью v. Земля вращается вокруг своей оси с угловой скоростью Ω, равной одному обороту в день. Таким образом, через некоторое время t она провернется на угол Ωt, и цель сдвинется вместе с ней. Тем не менее, с точки зрения стрелка, стоящего на Северном полюсе и глядящего на цель, все происходит так, будто бы последняя осталась на месте, а пуля отклонилась от заданной им траектории NC. Расстояние от P до линии NC в момент t составляет приблизительно произведение угла Ωt на пройденное пулей расстояние vt, то есть Ωvt2. В этом рассмотрении мы считаем промежуток времени достаточно коротким, а угловую скорость Ω – измеренной в радианах в секунду.

      4. Отклонение пули под действием силы Кориолиса в системе отсчета, связанной с Землей. Пуля, выпущенная из ружья на Северном полюсе N в направлении цели C, отклоняется к западу от цели. Для наблюдателя вне Земли траектория пули – прямая линия



<p>1</p>

На самом деле чуть меньше 24 часов. Во всей этой главе мы пренебрегаем вращением Земли вокруг Солнца. Таким образом, относительная ошибка равна 1/365, что составляет абсолютную ошибку около 4 минут. Кроме того, достаточно половины оборота, то есть чуть меньше 12 часов, чтобы плоскость качания маятника вернулась в первоначальное положение.