Название | Quantum Mechanics for Nuclear Structure, Volume 2 |
---|---|
Автор произведения | Professor Kris Heyde |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9780750321716 |
and
dm′m(j)(β)=∑k(no negative factorials)(−1)k(j+m)!(j−m)!(j+m′)!(j−m′)!(j+m′−k)!(m−m′+k)!k!(j−m−k)!×cosβ22j−2k+m′−m×sinβ22k+m−m′.(1.167)
1.8 A spinor function basis for SU(2)
The Schwinger representation and its associated basis leads directly to a spinor function basis for SU(2):
where u and
are independent functions. We require u and to satisfy (again, ℏ≡1)Thus, we deduce the realisation
It follows from equations (1.148), (1.149) and (1.147) that
and
It should be noted that
are elements of a complex function space which is formally developed in section 1.17 under the title of the Bargmann representation, i.e. this function space is known as Bargmann space. These bases are irreducible (unlike Cartesian tensors).1.9 A spherical harmonic basis for SO(3)
The use of spinor functions as a basis for SU(2) and the relations for Jˆ0, Jˆ± given in equations (1.172)–(1.174) lead to the consideration of a functional representation of the ∣lm〉 for (ℏ≡1)
Lˆ0=Lˆz=xˆpˆy−yˆpˆx↔−ix∂∂y+iy∂∂x;(1.177)
Lˆ+=Lˆx+iLˆy=yˆpˆz−zˆpˆy+izˆpˆx−ixˆpˆz,(1.178)
∴Lˆ+↔−iy∂∂z+iz∂∂y+z∂∂x−x∂∂z;(1.179)
Lˆ−↔−iy∂∂z+iz∂∂y−z∂∂x+x∂∂z;(1.180)
where the postion representation has been used. Evidently, Lˆ0, Lˆ± in the form given by equations (1.177), (1.179) and (1.180) leave the degree of a polynomial in x, y and z unchanged. Therefore, we consider the space of homogeneous polynomials in x, y and z, i.e.
f(x,y,z)=(ax+by+cz)l,(1.181)
where a, b, and c are complex numbers.
We start with the homogeneous polynomials ϕlm=−l(r⃗), r⃗≔(x,y,z), that satisfy the so-called ‘lowest weight’ conditions:
Lˆ0ϕl,−l(r⃗)=−lϕl,−l(r⃗)(1.182)
and
Lˆ−ϕl,−l(r⃗)=0.(1.183)
Then, consider
Lˆ0(ax+by+cz)l=−ix∂∂y+iy∂∂x(ax+by+cz)l=−ixl(ax+by+cz)l−1b+iyl(ax+by+cz)l−1a=l(ax+by+cz)l−1(−ibx+iay),(1.184)
and the right-hand side fulfils equation (1.182), i.e.
Lˆ0(ax+by+cz)l=−l(ax+by+cz)l,(1.185)
provided a=1,b=−i,c=0. Thus,
ϕl,−l(r⃗)=(x−iy)l.(1.186)
Evidently,
Lˆ−ϕl,−l(r⃗)=−iy∂∂z+iz∂∂y−z∂∂x+x∂∂z(x−iy)l=izl(−i)(x−iy)l−1−zl(x−iy)l−1=0.(1.187)
We can construct the ϕlm(r⃗) using (ℏ≡1)
Lˆ+ϕlm(r⃗)=(l−m)(l+m+1)ϕl,m+1(r⃗).(1.188)
For l = 1: from
ϕ1,−1(r⃗)=x−iy,(1.189)
Lˆ+ϕ1,−1(r⃗)=−iy∂∂z+iz∂∂y+z∂∂x−x∂∂z(x−iy)=iz(−i)+z=2z≔2ϕ1,0(r⃗);(1.190)
∴ϕ1,0(r⃗)=2z.(1.191)
Then,
Lˆ+ϕ1,0(r⃗)=2−iy∂∂z+iz∂∂y+z∂∂x−x∂∂zz=2(−iy−x)=−2(x+iy)≔2ϕ1,1(r⃗);(1.192)
∴ϕ1,1(r⃗)=−(x+iy).(1.193)
For l = 2: from
ϕ2,−2(r⃗)=(x−iy)2,(1.194)
Lˆ+ϕ2,−2(r⃗)=−iy∂∂z+iz∂∂y+z∂∂x−x∂∂z(x−iy)2=iz2(x−iy)(−i)+z2(x−iy)=4z(x−iy)≔2ϕ2,−1(r⃗);(1.195)
∴ϕ2,−1(r⃗)=2z(x−iy).(1.196)
Then,
Lˆ+ϕ2,−1(r⃗)=−iy∂∂z+iz∂∂y+z∂∂x−x∂∂z2z(x−iy)=−iy2(x−iy)+iz2z(−i)+z2z−x2(x−iy)=−2(x−iy)(x+iy)+4z2=−2(x2+y2)+4z2≔6ϕ2,0(r⃗);(1.197)
∴ϕ2,0(r⃗)=23(−x2−y2+2z2).(1.198)
Similarly,
ϕ2,1(r⃗)=−2z(x+iy),(1.199)
ϕ2,2(r⃗)=(x+iy)2.(1.200)
The functions ϕlm(r⃗) are proportional to the spherical harmonics, Ylm(θ,ϕ) (see table 1.1). This follows from the relationship between Cartesian coordinates and spherical polar coordinates:
x=rsinθcosϕ,y=rsinθsinϕ,z=rcosθ,(1.201)
whence
ϕ1,±1=∓(x±iy)=∓rsinθe±iϕ=r8π3Y1,±1(θ,ϕ).(1.202)
Similarly,
ϕ1,0(r⃗)=2rcosθ=r8π3Y1,0(θ,ϕ).(1.203)
ϕ2,±2(r⃗)=r2sin2θe±2iϕ=r232π15Y2,±2(θ,ϕ).(1.204)
ϕ2,±1(r⃗)=∓2r2cosθsinθe±iϕ=r232π15Y2,±1(θ,ϕ).(1.205)