С появлением многоклеточных организмов клетки, которые были раньше самостоятельными организмами, начинают функционировать как составные части более крупных элементов. Для того чтобы новый организм стал чем-то посложнее, чем комок склеенных вместе клеток, нужна координация. Выше я описал чувства и действия, наблюдаемые у одноклеточных. У многоклеточных системы, отвечающие за восприятие и поведение, усложняются. Более того, само существование этих новых объектов – животных организмов – зависит от данных способностей воспринимать и действовать. Восприимчивость и коммуникация между организмами дают начало восприимчивости и коммуникации в организме. «Поведенческие» возможности клеток, когда-то живших в качестве отдельных организмов, закладывают основу для слаженной работы нового, многоклеточного организма[23].
У животных эта скоординированность имеет несколько аспектов. Один из них присущ также и другим многоклеточным, например растениям, – взаимодействие между клетками, составляющее организм, то, благодаря чему он существует. Другой действует в более быстром темпе и составляет характерную особенность животных. У большинства животных, за немногими исключениями, химические взаимодействия между некоторыми клетками составляют основу нервной системы, простой или сложной. А у некоторых из них масса подобных клеток, объединившихся вместе, вспыхивает электрохимической грозой сигналов, изменивших свои функции, – и становится мозгом.
Нейроны и нервная система
Нервная система состоит из множества элементов, но важнейшие из них – это клетки необычной формы, которые называются нейронами. Их длинные отростки и сложные разветвления образуют лабиринт в наших головах и других частях тела.
Активность нейронов зависит от двух факторов. Первый – их электрическая возбудимость, проявляющаяся в первую очередь как нервный импульс, электрический спазм, проходящий через клетку в ходе цепной реакции. Второй – химическая чувствительность и обмен сигналами. Нейрон выпускает микроскопические брызги того или иного вещества в синаптическую щель между собой и соседним нейроном. Эти вещества распознаются другим нейроном и помогают запустить (или подавить) в нем нервный импульс, который называют также потенциалом действия. Подобное химическое взаимодействие – наследие древней системы коммуникации между организмами, «загнанное» внутрь. Потенциал действия имелся и у древних клеток до появления животных, и в наши дни существует не только у животных. Вообще-то впервые он был измерен у растения – венериной мухоловки, с которой работал Чарльз Дарвин в XIX веке. Даже у некоторых одноклеточных есть потенциал действия.
Нервная
23
Подробно о скрытых формах поведения губок см. работы Салли Лейз: Sally Leys and Robert Meech, “Physiology of Coordination in Sponges,”