Уравнения Навье-Стокса, отсутствие решения / Navier-Stokes equations, no solution. Константин Владимирович Ефанов

Читать онлайн.



Скачать книгу

Навье-Стокса на пространстве

      R

      3 на основанииприменения теоремы Курта Гёделя о неполноте

      Для решения проблемы используем теорему Курта Гёделя о неполноте. Теорема Гёделя приведена в работе [7].

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCABDAXMDASIAAhEBAxEB/8QAGwABAAMBAQEBAAAAAAAAAAAAAAMEBQYBAgf/xAA/EAABBAIBAgQEAwYDBQkAAAABAAIDBAURIRIxBhNBURQiYXEVMoEjJEJSkaEWYnIlNHSCkzZDVpKxsrPB0//EABYBAQEBAAAAAAAAAAAAAAAAAAABAv/EACARAQABBAIDAQEAAAAAAAAAAAABESFB8DFhcZGhUdH/2gAMAwEAAhEDEQA/AP2ZERARU8jk62Lijks+eRI/oY2CvJM5ztE/lY0nsD6eikpXYr9YWIWTsYSQBPA+F3H+V4B/sgsIiICIiAiIgIiICIsy/wCIKONndFaZdHS3qdJHQnkjA9y9rC0fXnj1QaaIiAiIgIiICIiAiIgIiICIiAiIgIoq9iG1H5sDxIzeg4dj9j6j6hSoCIiAiKKOxFLJJGx+3xHT2kaI9uPb6oJUREBERAREQEREBERAREQERQ2rUFKAz2JBHGCBs87JOgAO5JPAA5KCrkP9/wAV/wAU7/4ZFHnshDTqRV31nW5rsoggrNd0+a4gkgn0aA0kn2B4PY1Y81RzNrHSUJHyCG++KVr4nRPieIJCQ5rwHDuPT1V7K4eLK/Dv+Inq2KshkgsVy3rYSC08ODmkEEjRBSSGXhqlnGOvw1MPSpPETHsp17GqxeS7kODB07AG/k9PXupMP4it5eDHSMx8DH2fNNpgtFxq9Dukj8g6ndXBHHronW1r0qTKMBjbJJK9zuqSWV23yO9ye36AAAAAABRUMPTxtu9arMLZL0oll546tAcew4J+5JTKLyLxQ0bcd+jBciDmxzxtkaHDkAjfKKl62CQR9Q6yNhu+de+v1X0ucxefx0dSzlcpfq0xZuzQRusTNjHTE9zGtBcR/KXa93FbbLtSa1LUitQPsxNDpImvBewHsS3ewCgsL562l5Z1DrA2W75A9/7FcZj854ks4zI27eSxNWTGzyw2IRjJZCC3kaPnjfU0tI4/i0tPJW71DA47KZAQtvwzQNsCFpDNSPax7Rsk6+bffu0FIv8APpvp0Sz89/2fyP8Awsn/ALSvG+IMI+OzKzMUHMqECw4WWEQnevnO/l5BHK8z8rf8M5GVvzt+DkcOkg9Q6D2QaSLwHY37r1ARFBcvU8dWdZvWoasDdB0s8gY0b7bJ4QTosyt4lwF2VsVTOY6xI/fSyK3G4u0NnQB9ByVNJmsVDXgsS5OmyGyQIJHTtDZSewad6d+iC6ipz5XHQxQSSZGrE21r4dz5WgSkjjp5+b07LnDmvEU8Ph6OtPjWWcoHvm8ypI5rIw3qDwBKNcFoIJPLhyg69Fi+GcvZy9W4bPkPdUtvrieuCI5w3XzNBJ1ySCNnlp5Wk23G+/JSAd5kUTJSdcacXAfr8p/sgsIqGRzWPxMldl6x5JsyCOMljiOo9tkDTfudBQjxDRmrXpKpkllou8uSB8T4n9ZALW6eB+bY0ex2pW1RqosnD+IK2R8Nw5mw+OpH5ZNjzXhrYHtOntJPA04EKzFmsVYZWfDk6cjbbi2uWTtImI7hmj8xHrpXoXVn5cukjgpNLgLkwieWnRDAC5322GkbH8ysPtxx34aZDvMmjfI0gcANLQd/+cf3VHJROfn8M8N21j5tn23GQg1GtaxoYxoa1o0ABoAL6XxNNHXhdLK4NYwbcT6LPovzk1ovtspQ1OpxY1oe6Vzf4QeQGkdz33vsEGmvDvpPSATrgE6UFi3HWlrRvDibMvlM6R2PS53P000qWVhlhfGHujL2lvWzu3fqN+qk8GXIxeIs/LiBeY3Hu68mKsA8p/7zH5vlkj5/lI049XOwN6C3cx+7S1MkwkOhmbFJr+OORwaQfsS13/L9VSiwT62TwtSCJwxWJrOLHOeCXTaDG7HckNLzvXcqfxfG+XwxbZGNvJj1zr/vGrUUtvW+RtIqOQzeJxJY3JZSnSMmywWbDI+rXfXURtfEPiHCWGOfBmKErGFgc5lljg0v/JvR/i9PdQaKKnLl8ZBdFGXI1I7RAIgfO0SHZAHy73ySB+qpZzNCpC+rj7tL8UD4g2vKet2nva3ZYHBwHzd//VBsovFiZTxBDBZrwUsjjy5lnoutkcHGGMMc9xOnDoIDDydj6INxFnY/NU7zmQi7QfakYZmQ1rYlLot6a8cAkEa51rfGz3X1YzuHp1Y7VnK0oK8ri2OWSwxrHkdwCTong/0QX0UEd6pLbkqRWoX2IWh0kLZAXsB7Et7gFToCIiAuWy9uzP4yowVqE16HGRGxMyF7Glskm2Rk9bgDpok9d8jgrqVHHXgillljhjZJMQ6R7WgF5A0CT68ADn2Qc7Wxxxl+lPZDTcyeSfNP0cta74eQBoPGwGsA36nZ42ta/jbdydskGcvUGhvSY67IC0nZ5/aRuO+ffXHZR5WMvyeFcCNMuPJ/6Eo/+1pSSNiidI89LGAucfYBStCIc78ORkfw0+O73xpb1fDbpebr36fJ3pWvwLI/+LMv/wBKp/8Ags2CfI5ijRyLoqNencsRTV6vlHz2guDg8ydWuotBJaG9ifm4VvwpPlL/AMbkrt+KxUsTvbTYyAx9EbHFoP5jsHRPbfPfWgKNXIYyvk42MnktMDCSPhrcsBP3Mbm7/VUPDGBZhsZWDnWxY+HYyVk12WZjSAN6a55aOf5QttE4HLwYJs+CyuAdI6KQWZZoZPVhe8yxyD7OP9Wla2Dr3I6DbGTZG3IWQ19kRnbWu0B0g+wA/rv3Wh0NLw8tHUAQHa5APcf2H9F9IS5ux4csP8ZNycMrG0LETXXYT3kliP7I/wB9k/5GhW/ElY5GpWxrNdVi1C930ZG9sjj/AEbr7uHutlfPls8wydDesjpLtc69tpFqdHbAnwlr/E754Sz8MvMbJcYe/mxkdBA/zDQP0jHurvid4j8K5Z53ptKYnX+grUWV4oidP4Uy0TSA59KZo325YVMWWOavjPYT8brQR+TipPLJOsjj/imjj+Edbek/XlQ4Dw5+C2ZZvIwkfmM6d47FfCvPO+XeY7Y+mlugaAHsvVeJZxdlWfDlG1YfPJPk2vkOyIsrZjaPs1sgA+wCxPEFZ8d3FwYd0ti3jC6V7Jf3sxMe1zRI4Pka5x2CAQ7Y54I4XYKjfwmJysjJMji6dx8fDHWK7JC37Eg6UVg4PEV7DMW+q+SfHV/PsOlkb0GWy95B2zgjRMnGvUDnlVLeGyorZ6tWwzTJZ1Wqyh0QjZUIDeiNvUNEAvcQQAT6ngLtY42QxtiiY1jGANa1o0GgdgAvpWd354IrG75cS/D5cNzEQxZdJZLK8M/mxua2pprSyMF2wQOsnYAJ5+bgKy3CnNeK55c14dBx1ao2vTFoQyxOPVt7g0OJG9M1sdm86PC61E7MURNrQx1RWijEUIZ0NZF8gaNa0Na1+i5+HwjWZnJpzLlPIMEQY85eySXhzyQf2myNFvB45P1XSomamKMTKUprfiDGzzRgY7Hsksvkc4aM2ulg134a5539ljYya/JBWyzcNbux5GaS9IIHwgt7NgafMkb2jAPHqAuykjZLG6ORjXseC1zXDYIPcELyOOOGJkUTGxxsaGtY0aDQOwA9AkW3evRO77c34ZgyMGazAmxFmljrkgsxCxJC4tlcNSN0yR3BIDvuXKfw7hbeMmlhtOa+pTe9mN0eRE/Tuf8AT+QfRv1XQIg5ux4SrS5uvYEuU8kQzCRwy9kdLi5haB+02Bw7gccD6K/bcyvlcRXHWdmRrS5xceI/Uk7P3K1VnZL9nexs530CwWOPoOpjgN/83SP1To7Mu+zG2vLBQmvNjl6nwwPja48HpPzua0gHR772AfRS43IfiNd0rqk9V7HmN0U5YXNI+rHOaf0Kns1a92s+tbgisQSDT4pWBzXD2IPBXsMMVeFkMETIoowGsYxoa1oHYADsEgYWX8LwXsjTstkyJ/eS+boydhjWN8t421okAbyWj5QO59NrSlxb/wAPip08lepCN2xMx7ZpHDnguma/Y5+/A50r68I2NH1TBzNXOVq/xtmerU8eXrE9c6miiNJz4jvWnAQ7HIPdXfFMza/h2zK8EtaWb13/ADtWc0TVPHdKCXFV4anwUsNGetL+QAsLmvZ0jQ0G9IBIGj78aufPVjmwAdTrE8UTW++3jf8ARocf0T8My5HNxR3MllbLrEjcJejZXuW467ZiOgua+Njg7qYAe+2OGydaXRtw0ks+VuTVonTSFsdOObT2NbG0FhI5H59u9xx2O1eOAwxyH4gcRRNzq6viPhmeZv36tb2tBSlqGauHr4jMuqYWFuJ8h9d0lqzLZljc99roID3FrjsFz3HY2eACGhWcJisjGzCxWMW6COuXz23zSxvkks9PT1uLXHey55Gtngb6ey69Fc13f5H4lGb4hjyE3h+9FiiRdfCWxFrg12z7E8A