Натуральные числа. Этюды, вариации, упражнения. Владимир Валентинович Трошин

Читать онлайн.
Название Натуральные числа. Этюды, вариации, упражнения
Автор произведения Владимир Валентинович Трошин
Жанр Математика
Серия
Издательство Математика
Год выпуска 2020
isbn



Скачать книгу

цифр данного числа по убыванию,

      у4723=7432;

      хn – произведение цифр данного числа,

      х1953=1·9·5·3=135.

      В этом предложении есть свои плюсы. Во-первых, любой введенный математический знак фактически является иероглифом, то есть заменяет целое слово или, как здесь, целую группу слов.

      Во-вторых, все эти знаки есть в редакторе формул программы Microsoft Word и, следовательно, никаких проблем с набором текстов на компьютере не создадут.

      Время покажет, приживется ли это предложение.

      Среди унарных операций, которые можно провести с каждым натуральным числом есть одна, которая первоначально использовалась не в математических целях, а в целях околонаучных, типа гаданий, предсказаний и тому подобного. Операция называется вычисление цифрового корня числа. Цифровой корень натурального числа – это цифра, полученная в результате повторяющегося процесса суммирования цифр сначала данного числа, затем вновь полученного, повторяя процесс до тех пор, пока не будет получена одна цифра. Например, цифровой корень 1987652 это 2, потому что 1+9+8+7+6+5+2=38, далее 3+8=11 и, наконец, 1+1=2. Для этой операции встречается и другое название – конечная сумма цифр.

      Пользуясь сказанным выше, по аналогии, можно ввести обозначение для этой унарной операции: (+)n – тогда запись примет вид: (+)1987652=2. Объяснение вводимого знака следующее: + означает суммирование цифр, а круглые скобки показывают, что суммирование неоднократное, как в периодической дроби они показывают период цифры.

      Очевидное свойство цифрового корня: n≤9(+)n=n, то есть цифровой корень однозначного числа равен этому числу, а точнее этой цифре. Имеет место следующее утверждение: Сумма цифр числа n имеет такой же остаток при делении на 9, как и число n.

      Поскольку, если число больше 9, сумма цифр этого числа меньше самого числа, то справедливы следующие две формулировки:

      а). Цифровой корень числа совпадает с остатком от деления исходного числа на 9, если только этот остаток отличен от 0.

      б). Для чисел, сравнимых с 0 по модулю 9, цифровой корень равен не 0, а 9.

      Цифровые корни часто используют для того, чтобы убедиться, что какое-нибудь очень большое число не является точным квадратом или кубом. Все квадраты имеют цифровые корни 1, 4, 7 или 9, а их последними цифрами могут быть 2, 3, 7 или 8. Кубы могут оканчиваться на любую цифру, но их цифровыми корнями могут быть только 1, 8 или 9.

      Определившись с математическими операциями на множестве натуральных чисел, в том числе с операциями унарными, которые в этом множестве часто встречаются, перейдем к изучению свойств натуральных чисел. Но прежде хочу поместить изображения вводимых унарных операций так, как они выглядят в редакторе формул, а не в клавиатурном наборе. Клавиатурный набор искажает эти знаки. Последний знак еще не введен, он встретится в дальнейшем изложении. Подчеркну, что введенные знаки объединены одной идеей, легко запоминаются и допускают продолжение, то есть введение новых знаков по аналогии при возникновении необходимости.

      Вернемся к числам. При рассмотрении натуральных чисел имеют место несколько подходов к изучению их свойств. Рассматривая некое свойство, из множества всех натуральных чисел выделяется подмножество чисел, обладающих данным