Название | Основы глубокого обучения |
---|---|
Автор произведения | Нихиль Будума |
Жанр | Компьютеры: прочее |
Серия | МИФ Бизнес |
Издательство | Компьютеры: прочее |
Год выпуска | 2017 |
isbn | 978-5-00146-472-3 |
Теперь сделаем индуктивный шаг. Предположим, у нас есть производные функции потерь для слоя j. Мы собираемся вычислить производные функции потерь для более низкого слоя i. Для этого необходима информация о том, как выходные данные нейрона в слое i воздействуют на логиты всех нейронов в слое j. Вот как это сделать, используя то, что частная производная логита по входящим значениям более низкого слоя – это вес соединения wij:
Далее мы видим следующее:
Сведя эти факты воедино, мы можем выразить производные функций потерь слоя i через производные функций потерь слоя j:
Пройдя все стадии динамического программирования и заполнив таблицу всеми частными производными (функций потерь по выходным значениям скрытых нейронов), мы можем определить, как ошибка меняется по отношению к весам. Это даст нам представление о том, как корректировать веса после каждого обучающего примера:
Наконец, чтобы завершить алгоритм, как и раньше, мы суммируем частные производные по всем примерам в нашем наборе данных (dataset). Это дает нам следующую формулу изменения:
На этом описание алгоритма обратного распространения ошибок закончено!
Стохастический и мини-пакетный градиентный спуск
В алгоритмах, описанных в предыдущем разделе, мы использовали так называемый пакетный градиентный спуск. Идея в том, что мы при помощи всего набора данных вычисляем поверхность ошибки, а затем следуем градиенту, определяем самый крутой уклон и движемся в этом направлении. Для поверхности простой квадратичной ошибки это неплохой вариант. Но в большинстве случаев поверхность гораздо сложнее. Для примера рассмотрим рис. 2.6.
Рис. 2.6. Пакетный градиентный спуск чувствителен к седловым точкам, что может привести к преждевременному схождению
У нас только один вес, и мы используем случайную инициализацию и пакетный градиентный спуск для поиска его оптимального значения. Но поверхность ошибки имеет плоскую область (известную в пространствах с большим числом измерений как седловая точка). Если нам не повезет, то при пакетном градиентном спуске мы можем застрять в ней.
Другой возможный подход – стохастический градиентный спуск (СГС). При каждой итерации поверхность ошибки оценивается только для одного примера. Этот подход проиллюстрирован на рис. 2.7, где поверхность ошибки не единая статичная, а динамическая. Спуск по ней существенно улучшает нашу способность выходить из плоских областей.
Рис. 2.7. Стохастическая поверхность ошибки варьирует по отношению к пакетной, что позволяет решить проблему седловых точек
Основной недостаток стохастического градиентного спуска в том, что рассмотрение