Основы глубокого обучения. Нихиль Будума

Читать онлайн.
Название Основы глубокого обучения
Автор произведения Нихиль Будума
Жанр Компьютеры: прочее
Серия МИФ Бизнес
Издательство Компьютеры: прочее
Год выпуска 2017
isbn 978-5-00146-472-3



Скачать книгу

процесса при переобучении, что позволит избежать некорректных обобщений. Для этого тренировочный процесс делится на эпохи. Эпоха – одна итерация обучения на всем наборе. Если у нас есть набор размера d и мы проводим мини-пакетный градиентный спуск с размером пакета b, эпоха будет эквивалентна d/b обновлений. В конце каждой эпохи нужно измерить, насколько успешно наша модель обобщает. Для этого мы вводим дополнительный проверочный набор, показанный на рис. 2.13. В конце эпохи он покажет нам, как модель будет работать с еще не известными ей данными. Если точность на обучающем наборе будет возрастать, а для проверочного останется прежней или ухудшится, пора прекратить процесс: началось переобучение.

      Рис. 2.13. В глубоком обучении часто используется проверочный набор, препятствующий переобучению

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Kuhn D. et al. Handbook of Child Psychology. Vol. 2. Cognition, Perception, and Language. Wiley, 1998.

      2

      LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-Based Learning Applied to Document Recognition // Proceedings of the IEEE. 1998. November. Vol. 86 (11). Pp. 2278–2324.

      3

      Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain // Psychological Review. 1958. Vol. 65. No. 6. P. 386.

      4

      Bubeck S. Convex optimization: Algorithms and complexity // Foundations and Trends® in Machine Learning. 2015. Vol. 8. No. 3–4. Pp. 231–357.

      5

      Restak R. M., Grubin D. The Secret Life of the Brain. Joseph Henry Press, 2001.

      6

      McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity // The Bulletin of Mathematical Biophysics. 1943. Vol. 5. No. 4. Pp. 115–133.

      7

      Mountcastle V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex // Journal of Neurophysiology. 1957. Vol. 20. No. 4. Pp. 408–434.

      8

      Nair V., Hinton G. E. Rectified Linear Units Improve Restricted Boltzmann Machines // Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.

      9

      Мы можем рассчитать значения неизвестных весов, решив систему линейных уравнений, и получим точное решение. Но такой подход возможен только для линейного нейрона. Для нелинейных составить систему уравнений и получить точное решение невозможно, поэтому необходимо обучение. Прим. науч. ред.

      10

      Rosenbloom P. The method of steepest descent // Proceedings of Symposia in Applied Mathematics. 1956. Vol. 6.

      11

      Rumelhart D. E., Hinton G. E., Williams R. J. Learning representations by backpropagating errors // Cognitive Modeling. 1988. Vol. 5. No. 3. P. 1.

      12

      http://stanford.io/2pOdNhy.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/4QMvaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA1LjYtYzEzOCA3OS4xNTk4MjQsIDIwMTYvMDkvMTQtMDE6MDk6MDEgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE3IChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDpGRDE5OTREMDFBNEIxMUVBQjUyM0Q3QzU4QzJCMzc2RSIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDpGRDE5OTREMTFBNEIxMUVBQjUyM0Q3QzU4QzJCMzc2RSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkZEMTk5NENFMUE0QjExRUFCNTIzRDdDNThDMkIzNzZFIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOkZEMTk5NENGMUE0QjExRUFCNTIzRDdDNThDMkIzNzZFIi8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBdwIvAwERAAIRAQMRAf/EAJ4AAAICAwEBAAAAAAAAAAAAAAAHBggDBAUCAQEBAQEBAQAAAAAAAAAA