Безграничный разум. Джо Боулер

Читать онлайн.



Скачать книгу

Трампу. Прим. ред.

      22

      Doidge, “The Brain That Changes Itself,” xix.

      23

      Топология – раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Прим. ред.

      24

      Комплекс дисциплин, включающий науку, технику, инженерное дело и математику (Science, Technology, Engineering, Maths).

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/4QMvaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA1LjYtYzEzOCA3OS4xNTk4MjQsIDIwMTYvMDkvMTQtMDE6MDk6MDEgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE3IChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDoyQkIwODZDRTEyOEYxMUVBQjQwOTlCOUVDMUYyRUE5NiIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDoyQkIwODZDRjEyOEYxMUVBQjQwOTlCOUVDMUYyRUE5NiI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOjJCQjA4NkNDMTI4RjExRUFCNDA5OUI5RUMxRjJFQTk2IiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjJCQjA4NkNEMTI4RjExRUFCNDA5OUI5RUMxRjJFQTk2Ii8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAwJ9AwERAAIRAQMRAf/EAJ4AAQACAwEBAQAAAAAAAAAAAAAFBgMEBwIBCAEBAQEBAQAAAAAAAAAAAAAAAAECAwQQAAEDAwIDBAYHBgUEAQQDAQIBAwQABQYREiETBzEiFJVBMtQVVRdRUiPTlNVWYUJ1tRY2cXIzszWBYiQIQ6FjNBiRU4MlEQEBAAMBAQACAgIBBQEBAAAAARECEiExQSJRgWFxMpGhsUID0cH/2gAMAwEAAhEDEQA/AP0vkOQQbDbvHTBdcbJ1qO20wCuum6+aNtgAJxVSIkSpbhZEN8w4/wAAvvlr1To5PmHH+AX3y16nRyfMOP8AAL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8AAL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8AAL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8AAL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8AAL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHLDL6n2yGzzpVmvTDO8G+Y5b3RHe6aNtjqvpIyQU+lVqdryzfMOP8Avvlr1XpOT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wAAvvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wAAvvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wAAvvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHJ8w4/wAAvvlr1Ojk+Ycf4BffLXqdHJ8w4/wC++WvU6OT5hx/gF98tep0cnzDj/AL75a9To5PmHH+AX3y16nRyfMOP8Avvlr1Ojk+Ycf4BffLXqdHLG/1LtsZvnS7ReYsdFFDkPwHW2w3EgopEvBE1Wna8rfWmVT6kf8AF2j+O2b+YM1ndrVbK0yUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUFW6mf2qn8StH81jVnf41r9WmtMlAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFBVup/9i3T/K1/vhWd/i6/VprSKn1I/wCLtH8ds38wZrO7Wq2VpkoFAoFBW+pEy5wMDv8Ac7XNcgT7bb5U2O+2DLnfjsG4IkL4Ogoqo8eGv7am3xdfrln9W57/APrz/X/9Ty/f3hufp4e28jd4vk6bPCa6bP8Aurnm85bxOsOg4ll7MPAMZuuTXVyVcb7EiPAqsiT70iTHF4mmI8NoSNB1VdBBVRO1a3L56zZ6y3fq/wBPLPaW7tcLoTNvOQ5DJ5IstzlSWfXYfFtojYcT6jqCq+incOalIua2CVKuMWOUpyRaWwdntpBmooC4COAI6s98yAkVADUv2VeomETY+sXTu9vwGrfc3C96mbNtefhzIzEh1vgTbT8hlpozReG1C11qTeLda3Lr1Lwi1XR+2T7mjUuKbLczRp42o5yf9AZD4ATLKufuo4aa0u8ic1v3/LbJYXobNzOQDk8jCIjESVK3m22TpjrHadQVRtsj0XTgir6Fq24JMouJ1VwOXj8bIGLiRWmdISHAfWLKApMhSUUajtE0jrxbhJPsxXii/RU6hzUxj2TWPIYr0q0SfEtRn3IskVBxpxp9pdHGnWnRBwDHXiJCi1ZclmFM6odU7RZrPfoFou6NZXaoZS0ZbjnJBokDcAPnyzZb3+hDJF+is7bLrq2OnvVXHr5j1uak3FZGSNWeLcLtFCM8jxqbIK84y0Lac5OYqp9ghIi8Ka7QurMnWzpsVnhXkbk+druMlYMGUNvuBC7JH/4h0j67l/d+nRdOxdL3DmpV3qLiLOTjjD0t1q9lH8Z4Y4ksRSPsU1eJ5WkZEERNFIj4F3V73Cr1E5r0x1Cw5/HVyJu5ClnR0o6STB0FJ4T5fKBswFwzU+6IiKqvo1qdTGTFac3qxgUKzTLzKuLjVvt0nwVwNYktTjP6oiA+yjKutaqqIimKIuqaLTuLzWR3qfhrN2tdodkyW7lem0dtkYoE9CeDTcpJqxoO0U1PdptTiWiU6ic1pl1o6ZCw/IS+AbEV5I8p1tmQ4LLi6f6qg2SNj3tN5aDrw11RancXmrBdcsx+1pB8VL3OXJVS3MRwclPSNB3qTLUcXXDEQ7ykI6InFa1dpEwi7p1RwW2Y63kky5KlkccVhZjUeS8IOoW1W3habM2iQu6qOInHh21Ooc1t2TO8VvRXBuFNUX7SiFc40tl+E/HEhU0J1mUDLgiopruUdKs2lLKx4/1Ew7IJZQ7RcPESUj+NBomX2icjKato+zzQDmt7027m9U1qTaUutiKPrV04C2XK5ncZAQLPIGFdHyt9wFI8glUUbcRY+oqhJtX6FVEXiqau4vNSEnqZh8W42e3SZElqbfxQrQwcCcivpw10+w0FRRUUkLTanEtEp1E5r3YOo2H34bmVtmmrdlI27q7IjSYjcc29eYDhyWmRQg07w66p6aTaUutZbVnuK3V8I8KYZvvR1mRWnI8hkpEdO12OjrYK+HZxa3dqfSlJtKYrRtHVfBru6LdvmSHd01bYrpQJzbQzERFVhx1xgGwPvJwIkpN4t1rcd6h4c1OchuXFENmSMF6RynlihLPTSOcpA8OLvFE2KeuqonatOonNWKtIUCgUCgq3Uz+1U/iVo/msas7/ABrX6tNaZKBQKBQKBQKDHKZcejuNNvnGMxVBfaQFMFX94UcFwNf8wqlBx7oVfM2zfGbrcb1lE1JMK6v29pY8e2tjymmmTFVRYh97V1a56W2fW95I9dCOol3uvTedmGcX7mtsSnWTdebjR2Gm2xbUdEYaaJSIj04quvBESmm3mab6+4i/l1ExIYlxlHKebS0tBIuEY4ksJTTLnqurFJpJCt/9yBomi/Qta6jPNYLN1Rwm9Jaitcx+UF7J4bY4EKagO+GLY8u4mUEBAl0IjVE/bTqF1rUkdZ+nUabPhybi+w7a3W2LmbsCeDUY3lVGue8TCNNoendIiRF9FO4vNS2Q59iWPG03dp6NOPMOSwbaaekF4ZlNXHyFgHVFoU7TLQf20u0iSWtq4ZVYbfjhZJIkqVkFhJSzGG3ZA8gh3o7tYFw1Dau5S00ROK1c+ZMIy39TcLnS7rEZmutvWJpH7x4mJLijFbUVNFeOQ00AaiKqiKuqoi1JtDmtnHM9xTI5JxbRNV6SDAS+Q6y/HMozv+m+Avg0ptF6DHUf20m0pZYzHmeNt5W3ibktW7+8wstiGbTwo4yOupNuqCNHpouqCevBfoq5mcGPMtROo2IFc7zbGpbsibjwI5eGo8SW+jCEO5EU2mjAiVNe6CqXBeHBanUOa2cWzXHMqsy3qwyHZlsQjEZCxpDSGrfrcsXm2yc0Xh3EXjw7asuSzCCHrZ03KzTr17xkJarZIGJcJa2+4CDL5rojZ6x0VCRdEX6FUUXTcms7i81uOdVcJbuo2kpMtLkcP3kEX3dcFNYihzOdokfs0TT6d3d9bhTuHNZ7Z1IxC54q/lcCU/IsEZDJyaMOZxFtdrhA2rKOuCC67iAVRNF17Fp1MZTm5w9WLqJid9vUmyWyRIcukNtt2XHdhTGFaB4EcbVwnmWxHeK6jqvH0Um0pda92zqBiF0nFBt9xGTJ2OutCDbu14I5q28sY1DZI5ZptLlKWi0m0MVDr1t6bJaZ14W4yBtltkJDnylt1xQGZCrpy3FWPwLVURfoVU17Up3F5rff6n4axdLXanpEoLjem+dbIy2+fveDTcqj9hw2jxLXTanFdKdROay2DqNh9/G6HbJjht2UjC6uPxZUUI5ta8wDKQ00O4NO8Ouqemk2lLrY0YPWDp/Pm2yFEnvvSLyTg2pBgT9snkqqOE04rGwgDRdxou1O3WncXmrnWmSgUCgUCgUCgq3U/wDsW6f5Wv8AfCs7/F1+rTWkVPqR/wAXaP47Zv5gzWd2tVsrTJQKBQKCq9VDcXpzkkZmPIlyp1tmQ4seIw9JdN5+ObbY7GRcJEUl9ZU0T0rWdvi6/XJPCXf/APVb+nPc119/cnwfuz3dN5/N8XzvU5Xqcvjv9X0a68K5/wDrhv8A9m/brFehd6R5QtvnHBxe3rbL5bziSRkx3jgJH5oxSbR5wRd4KQAvYipw4pf4pn6xljD7kTP3bzZ5z9uzy5ts2aAkOS4TCN6h7xfBpszjpuNHO+iGuxOFTH3/ACZ+f4TfRC7X6yWq64pkVpuInYnnih3xbfMQLjGEtomiq1uN0REUEe1Q2oOu1a1pceVNp+XNMIxjMWMY6fRBtF2kXO0X45UqxXCA9Fgx2VcI/F+KJljQw1RQQnTTVV7vDSsSXxu2epfrPAzm9rndnhYrLbjEdufgvW6HvG48sh5r8iRpudNsREQbb4pquqcNau2fU1x46tfL1IutyFFst0jwrEw7cHJLsQyR52TCVllqMDXNddNBluIYiPdIVRfRru3LEjl+Lll9j6L4TBYxWY/dLddzG5K9bXXJtvbclPOeKix3gFDc5L3dc0UBVdF49mPcRu4zV06EW2+W2bnDV1tk6CU6/SLhGdnNoPNZkaEC8wfszP63L1RFrWn5Z3/CmZBEu+LwesMG6Wuc6GReIuFsvLMc3YpsONOLy3XxRQa5G7boZJ+xPpzfMtT3DZwNi63PJOnuQM2y4RbNieKNt3Ka5Fd2yjehoDbMYRQjkesjictC+jt4VZ9lS/lSrRiuVsdNcJbm2W7+8LRkzT624LdOUo8IHHHpD7go1xUydbRO3gPd476zi4azMr71LsuUXnq8/JscScDZYoUJqWcF9YT8lX3JPgnnTbQRB5othqhioqum5F1StbTNZ1viQzt3LMwxPDclj49cI8nH73CuN5x51kmnzGPxeVho++4IlqgcO8i6pS5slwTErY60a33pJkjFhxy4JOu78PlA3bngky3G32HTdcZFvnigNtbdz4j6uiejW7fE1+ob3bdk6tdOsgkwbnLNuNL98zQt05I8XxMUmYsdNzKcsGyLRddF1VTPTWpPsq/ioWy3GQlk6yWSLY511m3m/XeHCKHGJ9vnP72x5pghI0jSkh7j0T6F1qZ+rfwtFmwbI8Tyfp/ebk0/Pg2mwFZbkkRtyUUSSokYmjTIuOkBbuVuAV02prolXFliW5yqWWYXljfSbNhG1TnZWWZG5dLRZo8V955qMskXEN1toS5JEA67S07E9PCpZcVZZlcsagZEzm2fXhm0y73An2lsos+8RjhPyZLLCCFvRg244EyXHUhYTjwVVqzOal+RA9MouXL1Ox6/XbH7jAirjjlscFYKxosV5qSRow02KatMg1ps5neNddN1TXOV2xhXb3juUTMC6osx4F9B+85Icu2WgbY+gTGHZjbwvd+KryIgNkXBwUTREVOOhSy4qy+xfs7j3O6530skwIl2Yj24ZhXC4MW6QqxPEsNNtcznR3GwVSbJFQx7qcV07a1fwzPlQFiw3Jr1gnVbHmY9wjXK9XmVOtci4RXoXjGVeBwC3ONMN6vo2okiImm7sRKklsq2+xZFtF4v+X9N7jEt0y2RcRgyXL47IjPMKJOMNNDEaQgBX13NEn2W4dvFF4prfuP8M/JW30EgSQt2Wxrra5kNZWSyrrECfDkRkcYcVko7oc9sEVUNnXROIqia6cKuhupruDZUz0evfTNbbKkZJMvCFFnqy4sV1k5bUjxpy0HkinLAkJFPei8NOKVnFxhrMzl+h4LDkeFHjuOK84y2DZvF2mQiiKS9vbprXZyZqBQKBQVbqZ/aqfxK0fzWNWd/jWv1aa0yUCgUCgUCgUGGZLaiRXJLouE20O4hZacfcVP+1poTcJf2CKrQcW/9b1nY7h2Qx75abpAke9pFxBl62zUM47rTDYE2KMqrhKQL3A1L06aVy/8An5HTf2qJhuEZfK6HpZPc9wjXm0X9q9PWqVEfjLKitoKK22b4A24S8SQELXUezsrMlw1bMuoFFmy+r0rPggz2sbtuPDbngKFJGTMkG+bvLbiE2L7iCJjquzTVP8dN/nLH4wq/TFm8YV1CKOzj9xXEsqZSXG2W+aqWV59wi8I4RtJsDgKOacNdqrwHWs6+VdvYhMssOQ3K89VfD2+9i3e3rUtqihbJXhrksTVHG3XVYE220L94XW+C66qlTafVl+LT1OazaV4C0xcVcErhisqJLn22OMh1qW8wSJbVknqLUdHBFSXXU/3V+nW2f4TXCbxx27J0kxnEXLFcxnXe3Ja5RORtjcQREGZByuYok0nLcNQ1HvbV046a38YS/coG1pemso6wzWcamXALuxFK0RJ8CU1GneFjutPN7nWwEk3Gmg6opp6v01P5X+HjpdGy0+rNvv14styiszsUCE6+9DSNHYlA+26bAgKIjLbaNqDYnoa6Iui6601zk2xhu9XrLf52bMX/ABiBMeyTGRtj1vLwr6RpDZvyBmx0kKHKX7OQ0R6H6u70oujeXPhrfGp0stk7Hsp6lrMgXQmZ7UNyNPct0xEmvMsvDLcb+xTcRvvbkFE466jwpr5k29whem8vqhjWH4Pa7RDuyvjMkN5FZJ9rNqJHhHLccJ4JJR2nEPYe5ER09VXgPDbU1zMLti2tGVachd6K9R7MFiu63S8ZMc22xFts1HHo7smM6L