Название | Квадратные уравнения. Часть 1 |
---|---|
Автор произведения | Ирина Краева |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9785005064288 |
Пока же договоримся, что теоретические вопросы будем излагать на привычных обозначениях.
Вернёмся к определению. Давайте выделим внешние, «бросающиеся в глаза», черты квадратного уравнения. Во-первых, наличие знака равенства. Отсутствие его с очевидностью снимает вопрос о правомерности называть объект уравнением.
(Любое ли равенство является уравнением – разговор особый и не в рамках этой книги.)
Во-вторых, левая часть нашего равенства представляет собой алгебраическую сумму трёх слагаемых.
Возникает первый вопрос: обязательно трёх?
Другими словами количество слагаемых – это определяющий признак или нет? Давайте посмотрим.
Значения второго и свободного коэффициентов квадратного уравнения в определении никак не ограничиваются (в отличие от первого). Следовательно, они могут быть равными нулю. Тогда под определение квадратного подходят уравнения вида
ax2 + bx = 0 (c = 0, ab ≠ 0),
ax2 + c = 0 (b = 0, ac ≠ 0),
ax2 = 0 (b = c = 0, a ≠ 0).
Но в левых частях этих уравнениях не три слагаемых!
Тем не менее, это – квадратные уравнения, потому что их можно записать так
ax2 + bx +0 = 0,
ax2 +0 · x + c = 0,
ax2 +0 · x +0 = 0.
Так как количество слагаемых левой части уравнений ax2 + bx = 0, ax2 + c = 0, ax2 = 0 визуально меньше, чем может быть, их называют неполными квадратными уравнениями. Тогда как квадратное уравнение ax2 + bx + c = 0, в котором все коэффициенты отличны от нуля, называют полным.
Таким образом, отсутствие в записи конкретного уравнения свободного члена или слагаемого с первой степенью неизвестного не даёт нам права сомневаться в том, что уравнение всё-таки квадратное. Однако и наличие их не является веской причиной отнести уравнение к квадратным. Об этом чуть ниже.
Следующим возникает вопрос, а почему, собственно a ≠ 0? (Конечно, искушённый читатель знает почему.) Можно ли, например, уравнение вида ax2 + (a – 1) x + a = 0 (или в общем виде f (a) x2 + g (a) x + h (a) = 0) называть квадратным?
Давайте похулиганим и поставим в качестве первого коэффициента ноль. Тогда уравнение примет вид bx + c = 0.
Но это же линейное уравнение! Оно имеет свою теорию, свои изюминки.
Пусть будут «мухи отдельно, котлеты отдельно».
Теперь понятно, что требование a ≠ 0 необходимо для сохранения в квадратном уравнении второй степени –