Математика в занимательных рассказах. Яков Перельман

Читать онлайн.
Название Математика в занимательных рассказах
Автор произведения Яков Перельман
Жанр Математика
Серия Простая наука для детей
Издательство Математика
Год выпуска 1926
isbn 978-5-17-106792-2



Скачать книгу

имеется сообщение о научном открытии, появившееся из-под машины без участия творческой мысли. Сможем ли мы этим открытием воспользоваться?

      Нет, мы даже не сможем признать этого открытия. Ведь у нас не будет критерия, который позволил бы нам отличить истинное открытие от многих мнимых, столь же авторитетно возвещаемых в процессе работы нашей машины. Пусть, в самом деле, машина дала нам отчет о превращении ртути в золото. Наряду с правильным описанием этого открытия будет столько же шансов иметь множество неправильных его описаний, а кроме того, описаний и таких невозможных процессов, как превращение меди в золото, марганца в золото, кальция в золото и т. д. и т. д. Оттиск, утверждающий, что превращение ртути в золото достигается при высокой температуре, ничем не отличается от оттиска, предписывающего прибегнуть к низкой температуре, причем могут существовать варианты оттисков с указанием всех температур от минус 273° до бесконечности. С равным успехом могут появиться из-под машины указания на необходимость пользоваться высоким давлением (тысячи вариантов), электризацией (опять тысячи вариантов), разными кислотами (снова тысячи и тысячи вариантов) и т. п.

      Как при таких условиях отличить подлинное открытие от мнимого? Пришлось бы тщательно проверять на опыте каждое указание (кроме, конечно, явно нелепых), т. е. проделать такую огромную лабораторную работу, которая совершенно обесценила бы идеи «литературной» машины. Точно так же пришлось бы проделать обширные исторические изыскания, чтобы проверить правильность каждого исторического факта, утверждаемого каким-нибудь продуктом механического производства открытий. Словом, ввиду полной невозможности отличать истину ото лжи, подобный «механический» способ двигать науку вперед был бы совершенно бесполезен, даже если бы каким-нибудь чудом удалось дождаться осмысленного оттиска.

      Интересно отметить здесь следующий расчет Бореля (из книги «Случай»): вероятность выпадения орла 1000 раз подряд при игре в орлянку равна 21000, т. е. числу, содержащему около 300 цифр. Этот шанс приблизительно таков же, как и шанс получить две первых строки определенного стихотворения, вынимая наудачу из шапки буквы по следующему способу: в шапке 25 букв, одна из них вынимается, записывается и кладется обратно в шапку, после встряхивания вынимается вторая и т. д. Строго говоря, получить таким образом две первых строки определенного стихотворения вполне возможно. «Однако, – замечает Борель, – это представляется нам до такой степени маловероятным, что если бы подобный опыт удался на наших глазах, мы считали бы это плутовством»[6].

      Пирамида Хеопса и ее тайны

      Я.И. Перельман

      Высочайшая пирамида Древнего Египта – Хеопсова, уже пять тысячелетий обвеваемая знойным воздухом пустыни, представляет, без сомнения, самую удивительную постройку, сохранившуюся от Древнего мира. Высотою почти в полтораста метров, она покрывает своим основанием площадь в 40 тысяч квадратных метров и сложена из двухсот рядов исполинских камней. Сто тысяч рабочих в течение 30 лет трудились над возведением этого сооружения, – сначала подготовляя



<p>6</p>

Единственное, для чего может, пожалуй, пригодиться механический способ составления фраз из отдельных букв – это подыскание так называемых «анаграмм». Анаграммой какого-нибудь предложения называется другая фраза, составленная из тех же самых букв, что и первая, но размещенных в ином порядке. Анаграммы могут существовать даже и для сравнительно коротких фраз. Вот любопытный пример нескольких анаграмм предложения:

ПРОЛЕТАРИИ ВСЕХ СТРАН, СОЕДИНЯЙТЕСЬ!

1) Не теряйте дара своих сил, проснитесь!

2) Лида, не растеряйте своих, проснитесь!

3) Радость при Ленине, сотрясайте их все! Но и эти 4 фразы приходятся на огромное число бессмысленных сочетаний тех же букв, определяемое произведением

1 2 • 3 • 4 • 5 • 6…………..30 • 31 = 7 с 33 цифрами.