Статьи по общему языкознанию, компаративистике, типологии. Виктор Виноградов

Читать онлайн.
Название Статьи по общему языкознанию, компаративистике, типологии
Автор произведения Виктор Виноградов
Жанр Культурология
Серия Studia philologica
Издательство Культурология
Год выпуска 2019
isbn 978-5-907117-18-1



Скачать книгу

как фонемных пар отражено, например, в книге С. К. Шаумяна [Шаумян 1962а]. Но если допустить, что корреляция есть логическая пара, то необходимо распространить на корреляции основное свойство пары – некоммутативность: (ai; bj) ≠ (bj; ai). Отсюда следует невозможность равенства a R b = b R a, т. е. невозможность говорить о рефлексивности как свойстве корреляции. Это равенство справедливо лишь в том случае, когда в правой части имеется отношение , т. е. инверсное но отношению к R. Но такое условие предполагает двойственность (внутреннюю бинарность) коррелятивного отношения; в самом деле, если R – звонкость, то /b/ R /p/ /p/ R /b/, поскольку только /b/ находится в отношении звонкости к /p/, а /p/ находится в отношении глухости к /b/.

      Так мы вновь приходим к бинеме: ведь отношение > в строгом смысле есть отношение «< или >» («меньше или больше»), т. е. логическая сумма полярных элементов. Следовательно, чтобы коррелятивное отношение R было рефлексивным, оно должно рассматриваться как бинема, т. е. оператор, задающий некоторый класс пар. Наличие такого отношения между элементами будем называть корреляцией и записывать а ⊢⊣ b.

      Считая бинему логическим отношением, т. е. классом пар фонем, мы естественно приходим к выводу, что бинема «существует только как терм отношения» и не больше [Jakоbsоn 1962: 642]. Уже в 1939 г. было отмечено, что ни одна фонема не несет в себе никакой предиктабельной информации о ее оппозите – эта роль принадлежит дифференциальным признакам [Jakоbsоn 1962]. Между тем до появления последних работ Якобсона было принято считать, по традиции пражцев, что термами оппозиции являются сами фонемы. Однако достаточно представить коррелирующие фонемы в дифференциальной записи, чтобы убедиться, что различие реализуется в некоторых элементах х и х°, а еще точнее – в наличии и отсутствии диакритик у определенных элементов. Следовательно, основой оппозиции оказывается пара х : х°, представляющая собой бинему. Отсюда следует, что оппозиция, задаваемая бинемой, есть логическая сумма вида φi ∨ φj. Этот вывод, правомерность которого едва ли подлежит сомнению, позволяет заключить, что определение корреляции Л. Ельмслевом [Ельмслев 1960: 346] как логической импликации должно быть признано ошибочным: представляя корреляцию как импликацию φi → φj, мы придем к выводу, что оппозиция есть не дизъюнкция φi ∨ φj, а дизъюнкция φ̄j ∨ φj, так как а → b=āb.

      В свете задачи построения порождающих и распознающих моделей мы можем резюмировать все сказанное следующим образом: бинемы суть операторы синтеза, задающие классы оппозиций; оппозиции суть операторы восстановления бинем, т. е. операторы анализа. Что же касается самого понятия оператора, то оно до сих пор употреблялось как неопределяемое, потому что определение его входит в задачу описания порождающей модели, которой посвящена специальная работа. Здесь же мы можем лишь сослаться на определение лингвистического оператора, данное Е. Л. Гинзбургом [1963].

      6. Понятие корреляции взаимно импликативно