Статьи по общему языкознанию, компаративистике, типологии. Виктор Виноградов

Читать онлайн.
Название Статьи по общему языкознанию, компаративистике, типологии
Автор произведения Виктор Виноградов
Жанр Культурология
Серия Studia philologica
Издательство Культурология
Год выпуска 2019
isbn 978-5-907117-18-1



Скачать книгу

соответствует количеству шагов в дереве порождения. Уже давно замечено, что, задавая тот или иной признак, мы тем самым задаем некоторый пучок признаков, автоматически выводимых из наличия данного признака (ср. также: [Jakobson, Lotz 1949]). На этом принципе построена модель, описанная М. И. Лекомцевой [Лекомцева 1963]8. Это значит, что задаваемый дифференциальный признак есть оператор выбора некоторого комплекса. Последовательное применение к такому комплексу различных операторов приводит к порождению комплексов, которые могут быть названы замкнутыми, или устойчивыми (в иной терминологии – терминальными), в том смысле, что они соответствуют тому набору элементов, который есть система фонем данного языка.

      Из сказанного ясно, что теоретически в качестве исходного оператора может быть выбрана любая бинема. В практике, однако, описание синтеза фонем начинают обычно с выбора в качестве оператора бинемы, наименее богатой содержанием, т. е. имеющей наибольшую сферу распространенности, что позволяет осуществить последовательную развертку символа фонемы от более общих классов к подклассам и, наконец, к конкретным фонемам.

      Независимость бинем в системе, т. е. невыводимость их друг из друга, позволяет также трактовать их как своего рода «нормальные (ортогональные) координаты» n-мерного гиперпространства. Такая точка зрения была развита в работах Колина Черри [Сherrу 1956; 1957]. Примечательно, что известный ученый, говоря о координатном геометрическом представлении фонем, оперирует пространством в 12 измерений, тогда как, по мнению Якобсона, число дифференциальных признаков равно 24. К. Черри вдвое уменьшает число параметров, считая, что набор признаков исчисляется 12 элементами, которые могут находиться в двух состояниях. Очевидно, что введение бинемы как особого предельного элемента фонологической структуры нисколько не противоречит такому мнению. Представленные геометрически фонемы (оптимальное число их равно 212, т. е. 4096) получают выражение в виде кубов, размещенных в данном гиперпространстве; каждая точка, помещенная в одном из кубов, соответствует некоторому состоянию системы, т. е. конкретной фонеме. Движение этой точки в описанном 12-мерном пространстве образует кривую, которая соответствует нормальной речевой последовательности.

      Геометрическая модель фонологической системы, в отличие от матричного представления, упомянутого выше, имеет то преимущество, что она объемна. Однако если заданное гиперпространство фонем всегда позволяет перейти к речевой последовательности, обратный путь невозможен. Координатная структура невыводима из линейной организации фонем и поэтому в значительной степени специфична. Она не всегда дает нам ту картину внутренней организации системы фонем, которая нас интересует.

      С другой стороны, самый тщательный дистрибутивный анализ линейных организаций тоже едва ли гарантирует успех в подобных разысканиях. Приверженцы такого анализа (главным образом, американские лингвисты) считают



<p>8</p>

В зависимости от богатства содержания признака степень предсказуемости такого автоматически выводимого комплекса будет большей или меньшей (закон Крушевского – Куриловича).