Динамическая Вселенная и белые дыры. Юрий Иовлев

Читать онлайн.



Скачать книгу

ух других книг, была номинирована на лучшую книгу 2018 года. В новой книге показано, что преобразования Лоренца, как раз легко и просто получаются, если точка перемещается по некоторой произвольной кривой, а не инерциально. Так же показано, что уравнения Лоренца – Эйнштейна, использующиеся в СТО, несложно выводятся исходя из тех же соображений. Теоретически обоснована и показана возможность перемещения в пространстве со скоростями, превышающими скорость света. Объяснён принцип перехода материи через световой (энергетический) барьер. Обосновано существование Мировой среды, приведён расчёт величин энергетического барьера зоны неопределённости, возникающей при переходе через «световой барьер». Приведены точные вычисления величины космологического красного смещения и температуры фонового излучения Вселенной, как результат процессов, происходящих в зоне неопределённости светового барьера («Кипящем слое вакуума»). Предложена гипотеза наличия белых дыр, внутри космических объектов, как источника энергии, материи и магнитного поля. Рассчитаны параметры белых дыр, предложены физические принципы их возникновения и существования. Предложен новый взгляд на строение и состав внутреннего ядра планет. Приведён расчет изменения основных параметров нашей планеты в течение 280 млн. лет в рамках концепции «Растущей Земли». Показана зависимость параметров планет Солнечной системы от излучения белых дыр внутри них. Сделана попытка объяснения изменения магнитных полей планет Солнечной системы во времени и дрейфа их полюсов. Предложена гипотеза наличия белых дыр, во внутренних ядрах звёзд и галактик, как источника энергии, определяющего параметры этих объектов. Дана классификация различных типов белых дыр, в зависимости от типов космических объектов в которых они находятся. Приведена таблица температуры белых дыр, находящихся в центре звезды, в зависимости от её класса и температуры поверхности. Предложено объяснение структуры и состава внутренних ядер квазаров и галактик, их энергетические характеристики, а так же механизма образования джетов.

      Введение. Проблемы современной космологии

      Мы живём в трёхмерном мире, который, в настоящее время, обозначаем простым и ёмким словом – Вселенная. В Большом энциклопедическом словаре Вселенная определена, как «Весь существующий материальный мир, безграничный во времени и пространстве, и бесконечно разнообразный по формам, которые материя принимает в процессе своего развития. Это мироздание Вселенная, изучаемая астрономией, – часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития науки (иногда эту часть Вселенной называют Метагалактикой)». Не удивительно, что человечество с незапамятных времён интересовал вопрос о строении Вселенной. В начале 20-го века доминирующее место заняла тория о возникновении и эволюции нашей Вселенной в результате «Большого взрыва». Общепринятая на данный момент космологическая модель, это модель, описывающая раннее развитие Вселенной, а именно – начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии[1].

      Доказательствами «Большого взрыва» стало обнаруженное американским астрономом Весто Слайфером в 1912–1914 годах красное смещение для галактик. В 1929 году Эдвин Хаббл открыл, что красное смещение для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон красного смещения, или закон Хаббла) и объяснил это эффектом Доплера. Однако в последствие выяснилось, что наблюдаемое красное смещение от галактик нельзя объяснить только эффектом Доплера, в него вносит вклад космологическое красное смещение из-за расширения пространства Вселенной. К тому же имеется не только красное но и фиолетовое смещение эффекта Доплера вследствие собственного движения галактик. При этом на больших расстояниях вклад космологического красного смещения становится преобладающим[2]. Таким образом, на самом деле, основной вклад в красное смещение вносит не эффект Доплера, а расширение самого пространства, причём, это расширение идёт с увеличивающейся скоростью, в зависимости от расстояния до космического объекта – чем он дальше, тем с большей скоростью от нас удаляется. В начале 1970-х годов для постоянной Хаббла было принято значение H=53,5(км/с)/Мпк. Наиболее надёжная оценка постоянной Хаббла на 2013 год составляла H=67,8±0,77(км/с)/Мпк[3]. В 2016 году эта оценка была уточнена до H=66,93±0,62(км/с)/Мпк[4]. Следует отметить, что измерения разными методами дают несколько различающиеся значения постоянной Хаббла. Указанные выше значения получены с помощью измерения параметров реликтового излучения на космической обсерватории «Планк». Опубликованные в 2016 году измерения «местного» (в пределах до z < 0,15) значения постоянной Хаббла путём вычисления расстояний до галактик по светимости наблюдающихся в них цефеид на космическом телескопе Хаббла дают оценку в 73,24 ± 1,74 (км/с)/Мпк,[5].

      На самом деле, с развитием наблюдательной астрономии и повышения точности измерений, в красном смещении обнаруживалось всё больше странностей. Так, Аристарх Аполлонович Белопольский, обнаружил в 1887 году асимметрию «Доплеровских» смещений наиболее



<p>1</p>

Wollack E. J. “Cosmology: The study of the Universe. Universe 101: Big Bang Theory”. NASA. 10.12. 2010.

<p>2</p>

А. В. Засов, К. А. Постнов «Галактики и скопления галактик». Общая астрофизика. Фрязино. Век 2. 2006. с. 412. ISBN 5-85099-169-7.

<p>3</p>

Abbott B.P. et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). “Observation of Gravitational Wawes from a Binary Black Hole Merger”. Physical Review Letters 116(6). DOI: 10.1103/PhysRevLett.116.061 102.

<p>4</p>

Ade P. A. R. et al. (Planck Collaboration). “Planc 2013 resaults. I. Overview of products and scientific results”. Astronomy and Astrophysics. 22.03.2013. 1303:5062. arXiv.1303.5062.DOI.10.1051/0004-6361/201321529. Bibcode: 2013arXiv1303.5062P.

<p>5</p>

Riess A. G. et al., “A 2.4 % Determination of the Local Value of the Hubble Constant”. arXiv:164.01424 [astro-ph].