Название | Предсказываем тренды. С Rattle и R в мир моделей классификации |
---|---|
Автор произведения | Александр Фоменко |
Жанр | Компьютеры: прочее |
Серия | |
Издательство | Компьютеры: прочее |
Год выпуска | 0 |
isbn | 9785449663054 |
4.3. Нелинейные регрессионные модели
Многие из линейных моделей могут быть адаптированы к нелинейным трендам в данных, вручную прибавляя параметры модели (например, квадраты параметров). Однако для этого необходимо знать специфический характер нелинейности в данных.
Есть многочисленные регрессионные модели, которые по своей сути не линейны. При использовании этих моделей точная форма нелинейности не должна быть известна явно или специфицироваться до обучения модели. Рассмотрим несколько таких моделей: нейронные сети, машины опорных векторов (SVM) и K-ближайшие соседи (KNN). Основанные на дереве модели также не линейны. Из-за их популярности рассмотрим отдельно.
4.3.1. Нейронные сети
Нейронные сети – это мощные нелинейные методы регрессии, вдохновленные теориями о работе интеллекта. Как частные наименьшие квадраты (PLS), результат моделируется посредством многих не наблюдаемых переменных (названными скрытыми переменными или скрытыми модулями здесь). Эти скрытые модули – линейные комбинации исходных предикторов.
При обработке этой модели как нелинейной регрессионной модели обычно оптимизируются параметры для минимизации суммы квадратов остатков. Это может вызвать вычислительную проблему, связанную с оптимизацией (вспомним, что нет никаких ограничений на параметры этой комплексной нелинейной модели). Параметры обычно инициируются случайным значением, а затем используются специализированные алгоритмы для решения уравнения.
Кроме того, у нейронных сетей есть тенденция к переобучению отношений между предикторами и целевой переменной из-за большого количества коэффициентов регрессии. Для преодоления этой проблемы предлагается несколько разных подходов.
Один из подходов к решению проблемы переобучения состоит в использовании сходимости весов. В этом случае прибавляется штраф за большие коэффициенты регрессии так, чтобы любое крупное значение имело значимое влияние на ошибки модели. Формально, произведенная оптимизация попыталась бы минимизировать альтернативную версию суммы квадратных ошибок.
Учитывая проблему оценки большого количества параметров, подогнанная модель находит оценки параметра, которые локально оптимальны; то есть, алгоритм сходится, но получающиеся оценки параметра вряд ли будут глобально оптимальными оценками. Очень часто различные локально оптимальные решения могут произвести модели, которые очень отличаются, но имеют почти эквивалентную результативность. Эта нестабильность