Название | Big data простым языком |
---|---|
Автор произведения | Алексей Благирев |
Жанр | Прочая образовательная литература |
Серия | Бизнес-бук |
Издательство | Прочая образовательная литература |
Год выпуска | 2019 |
isbn | 978-5-17-111829-7 |
Вот так называемые Cultural Hacks или Лайфхаки.
Основа коллаборации между людьми с использованием данных лежит, прежде всего, в понимании того, что важно для каждого из участников: от чего зависят их бонусы или выплаты, на что обращают внимание люди, которые принимают решения. Для этого нужно понимать, какими объектами оперирует компания, и это понимание перенести на уровень данных. Традиционная ошибка – начать собирать все данные компании, считать все возможные из них метрики и отправлять всем заинтересованным людям отчеты с этими показателями.
Большая часть отчетности, участвующая в подготовке, проверке или анализе, никак не связана с теми мотиваторами, от которых зависит завтрашний день каждого участника процесса, принимающего решение. В основном, ключевой ошибкой всегда и везде была простая демонстрация данных, в надежде, что решение с использованием этих данных найдет себя само.
На самом деле, в основе бизнеса лежат традиционные бизнес-вопросы.
Рассмотрим несколько примеров? Ведь это звучит это очень абстрактно.
Пусть у нас есть небольшая организация, где помимо прочих департаментов, есть целый отдел клиентского сервиса. Пусть вы являетесь топ-менеджером, уверен однажды это будет именно так.
Так вот, я утверждаю, что вы как руководитель будете регулярно озабочены необходимостью постоянно задавать весьма конкретные и повторяющиеся вопросы о том, как обстоят дела с уровнем клиентского сервиса (успевает ли организация обслуживать своих клиентов вовремя и так далее).
Ответы на них будут лучше, чем просто отчетность, которая отвечает не на конкретный вопрос, а на открытый.
Все подобные вопросы можно выписать, структурировать и передать алгоритмам, чтобы они уже отвечали.
Переход к фокусировке на тех данных, которые действительно нужны организации, ведет к созданию новой формы культуры, где данным выделяют центральное место, а все решения – деперсонализированны, потому что важно не мнение людей в комнате, а данные на которых оно строится.
Нет смысла бороться с HYPPO, все решения должны быть деперсонифицированны, потому что они говорят не про мнения отдельно взятых людей, а про реальные тренды, бенчмаркинг, результаты работы клиентов или уровень их удовлетворенности. Будь-то электронная коммерция или реальное производство, данные покажут, что идет не в соответствии с ожиданиями, и это никак не связано с персональной оценкой.
А если HYPPO по стечению обстоятельств стал читатель этой книги, то для него важно помнить, что роль HYPPO – диверсифицировать мнение людей, допуская споры и несогласия. Своим присутствие