Таинственное, запредельное число 1836. 1836 / 1,0625 = 1728. Александр Гущин

Читать онлайн.



Скачать книгу

тетраэдра равны числу √139968. Вписанный в сферу тетраэдр, «мечтает» быть, на комфортном, на равновесном диаметре, равном 18 единиц. «Коммунистическое» счастье диаметра 18 такое:

      Объём шара равен 972π.

      Площадь сферы равна 324π.

      Площадь круга равна 81π.

      Длина окружности равна 18π.

      Объём равновесного тетраэдра равен

      18√432 = 374,122974434877…= 119,117…ц

      или

      216√3 = 374,122974434877…= 119,0870…π.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQAAAQABAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCAQAAtQDASIAAhEBAxEB/8QAHgAAAQQDAQEBAAAAAAAAAAAAAAQFBgcCAwgJAQr/xABsEAACAQMDAwIEAwUDBgcIACcBAgMEBREABhIHITETQQgiUWEUMnEJFSOBkUKhsRYzUmLB0RckOHa04fAlNDVDcoKSsrMYN1NjdHWTlaK10vEZJjZGVsInKEVXc8PTOURUVYOUKVhkZpalxP/EABsBAQADAQEBAQAAAAAAAAAAAAABAgMEBQYH/8QANREAAgICAgEEAQIEBgEFAQEAAAECEQMhEjEEEyJBUWEycQUUgZEjQqGx0fBSFSQzweE0Yv/aAAwDAQACEQMRAD8A7w6kbXpLptC9VNva12Tcu57S9JDcnmEcaVEKNLAzyjB4rwzyAJABPf3q237psUG/d2bo3VJHJUU11pbVY5qWpP4mr3JT24U08AjX+0wkPElQjo2cdtTuo6b124pNtbTvcy19o2L+Gec11PDNHck9J4AnFeJjb0Wbm2CrA8cHzqA7G2Ps7/2c/eVP+4KWNtubdt1VRnK8Q8kUaGRl/tNxIHLBxxB+mt4R5Xf7llvcnojvXOW9/D/0IlW67imqd/8AUGuio7zd1cympijiYyRrzz6aCE+kMAdyWGCdcKT1CSNwjXiqgKo+gGrq+LbrTD1T34ttsFdNPtnb4kht6yBgzTu38d2LElvmHFGzjhjGqHWVjxz4Pvqkt7OfC/Vby1SfX7CqMknB7cvb7acqM4yyjkAMAH66aYyVbOP+vTzb1YlQPr2Grp/B0/NFidMLPVXnctus9GEFTW1MVNCZG4qzuwAGfbXq1DGIokiVQoRQoA+gGP8AZrjD4IOmv7xu9Z1Aulvl/D2yMQ26Vl/hSVL8hIVPnkigDxjEv1Gu0SSPze/Ya18qSUY4vrv+pvlajFQR90aPbOjXGYBrCaCGqianqY1eKUcHVhkEHWej21KdAS26rWspufExtG7wuhOSjIxUg/yAP6EaVab7fMouVzpAjApJFOT7H1E9v5xn+o04agGippvxVNLTCZ4jKpAkXBZCR2ZeQIyPIyNMe34b7t9orNe66muFPJiOjq4qcU7jig+SVASpZsMwZMDyOI1IHjDlW5cSjZBx/Ufz0x7irJqW7bdgzGlNV3L03kJHISLFI6IAfPPBH2x99SvoXQ/61VMwgiMhR2AIB4DJAPk/oPJ+2inV0Rg0nMF2ZT9ifH8tfKmL1wkLcghcMxVip7dx3H38/bUAyhwUDq5YOAc5yPHbGdbNGAPGjQBo0aNAGjRo9s6Arjf9vWu6q9M8wCQQVF1nYkZC8KZCD+ueONR/4qOpo6f9J71TUAq/3ndoVtsE0UDmOnE5KM7S44KwQPxUnJOO2nzfk083WHpta4bgaT1Ib3UMVUEyqsES8BnxkMTkd/l1RH7QHc8NHZNobCpVYepNUXaUczxCovox5HuS0jtk/wCidbXfFP8A7spK2qONo68NOvE8QAAAR4A/2eBqS26sjlVYy3nv/PUI5K0pZDnHy5x27adLXcT6q5Y4A79u2dejKPrR/JjPG41KJN5YQYiQR8oGP11vihCRKuffTdQXAzBIhjBGf007jBZFXGSewGsGpNOLM/KipxWSK2hTNRt6ZYfyPvrTTQ8VKnz508CRGiEbqDkDGk9bTrGrPH2X6Af3a4Za0WyKoLyY/HY3V0YMJULkt5OfGmOSPllD2+UY1IX/AIrLHxwcd+3tpBNARKzjJwfpqp38+cFmgMNbRJE3JiWbj2+2kMdPgH5PPj66krRmoYIRhgO/00mmoCgygwSeOs5RUmc8ne0b9ibWqN2bntu3adHMl0rIKJSg+ZRI4VmH/kqWb+WvTq27Vtm2wrbdpVpwsUUEkSfKk8cahEyPAcKAA38j21xr8I2zP3p1Rorw8DNDYqaeuZxjAlKelFn+buf1XXc2uhvjCMP6nRKcnFRbNdPUR1MfqxE8c4IIwVI8gj2I+mtmkNfTVUbPcLYqNUhcNE7cUqAPAJ9m9g38jkeEm3dzUl/jliNNPQXClPGqt9VxE9Oc4GeJIZT5DqSpHv7apWrXRSh50aNHtnUEBqnfi6oXrvh83Tw4/wDFfwlY3IkYSOpjLEY98auIHIyPGqx+JuKSToDv1YpOBFmlcnGeyspI/mAR/PV8f6kQeSN4QpM6t+bJ0ymMc8E5PL+WpLfFzVzY/wBJvf2ydMbRnIHbPnucavJe4iy7vgp3TcNrfERtZrbRtVm+GosdRAJvSBimj5mXPgmP0eWD5GQMEjXqvS1VPWLJ6D8vScxyKRgqw9iPYnz9wdeSPwsVU9s6/wCwKiK4rb/+7ipLUOFKiJoZRIp5dgHTkmfI55Hca9TrjRu14F62xSu12qaJYzUStIKCWFXJVJipOWHJijKCwz54kjSVOqJqiTkZGfpqFdUOnuyt7WpJ90WWWqqLaJJaKoo2dKqCVo2T5HjwwBViGB+Ug/N2090cu4axolr6ijoZkd3lpo4ml9SIOwUrIxXsV4E9uxyPGsL7tc7jq6WKqus0dvjZZKiiiHAVbjIUSOpyYwSMp