Новые методы терапии сахарного диабета 1 типа. Радиогенетика, эпигенетика. Юрий Захаров

Читать онлайн.



Скачать книгу

пластинками из кварца (Gurwitsch, 1923; Будаговский, 2004; Бурлаков et al., 1999), стекла (Albrecht-Bühler, 1992; Trushin, 2003; Farhadi et al., 2007) и исчезают при их замене на матовые пластинки из того же материала (Будаговский А. В., 2004; Trushin M., 2003). В ряде случаев доказано участие электромагнитных волн: УФ (Гурвич А. Г., 1934; 1945), ИК (Albrecht-Bühler, 1991; 2000); получены спектры дистантного взаимодействия (Frank, Rodionow, 1932). Показано, что сверхслабое излучение от физических источников того же спектрального диапазона, что и предполагаемое излучение биологических объектов, действует аналогично последнему (Frank, 1929; Chariton et al., 1930; Albrecht-Bühler, 1991; 1994). Некоторые авторы (Кузин et al., 1987; Бурлаков et al., 1999; Voeikov and Novikov, 1997; Молчанов, 1985) также предполагают электромагнитную природу эффекта. Ю. А. Николаев (1992) допускает участие акустических волн.

      Впервые с помощью физических детекторов электромагнитное излучение пяти биологических объектов зарегистрировано от «индукторов» МГЭ (Rajewsky, 1930; 1931; Frank, Rodionow, 1932, обзор работ см.: Гурвич, 1966). Однако серьезное развитие проблема сверхслабого излучения получила после работ: Colli, Facchini, 1954; Тарусов et al., 1961; Владимиров, Львова, 1964. В основном – в исследованиях школы Б. Н. Тарусова. Показано, что во всех биологических объектах и в ряде модельных систем постоянно идут процессы свободно-радикального окисления, являющиеся источниками сверхслабой хемилюминесценции в видимой области спектра (Тарусов et al. (ред.), 1972; Журавлев, 1972; Владимиров, Шерстнев, 1989). В работах школы Б. Н. Тарусова эти процессы рассматривали как чисто деструктивные. Позже показано, что их определенная интенсивность необходима для нормального функционирования клетки (см. обзор: Voeikov, 2001), открыты ферментативное производство активных форм кислорода (Babior et al., 1973; Krieger-Brauer, Kather, 1995) и их влияние на важнейшие клеточные процессы (Downs et al., 1998; Chiarugi et al., 2003; Gordeeva et al., 2004). В настоящее время NO и O2 рассматривают, наряду с Ca2+, как основные вторичные мессенджеры в клетке (Khan and Wilson, 1995; Droge, 2002; Saran, 2003).

      Ряд авторов (Воейков, 2003; Новиков, 2004) связывает регуляторную роль АФК с излучением при их рекомбинации. Однако до настоящего времени механизмы дистантного взаимодействия остаются неизвестными. Электромагнитное излучение от большинства биологических объектов имеет очень низкую интенсивность: по данным разных авторов – ~102 квант/см2/сек (Rajewsky, 1930; 1931), ~103 квант/см2/сек (Frank, Rodionow, 1932), ~0,5 – 5 квант/сек (Журавлев, 1972). По оценке Poppа (1992), мощность электромагнитного взаимодействия биологических объектов лежит в диапазоне 10 – 17 – 10 – 15 Вт (эквивалентно ~100 – 103 квант/сек в диапазоне ближний УФ – ближний ИК). Наиболее дискуссионный вопрос в этой области: как столь слабый сигнал может оказывать специфическое действие (стимуляцию клеточных делений или физиологических функций, изменение скорости развития и его аномалий) на фоне световых потоков значительно более высокой интенсивности? В школе А. Г. Гурвича обращали особое внимание на спектр излучения и «режим» взаимодействия объектов: периодическое прерывание, экранирование отдельных частей и др. Некоторые авторы (Залкинд, Франк, 1930; Гурвич А. Г., 1934) предполагали, что излучение, вызывающее МГЭ, происходит отдельными квантами или группами квантов, а получение максимального эффекта связано с определенной