Токсичность автомобиля. Юрий Медовщиков

Читать онлайн.
Название Токсичность автомобиля
Автор произведения Юрий Медовщиков
Жанр Компьютеры: прочее
Серия
Издательство Компьютеры: прочее
Год выпуска 0
isbn 9785449633194



Скачать книгу

различия иногда не проявляется, но проблема точности решения для данных задач остается сложной. К более серьезным и совершенным, но новым методам относится численное моделирование на базе метода конечных элементов. В классе задач теории движения транспортных средств известен лишь ограниченный круг работ. Однако, в целом данный метод известен как самый серьезный и точный инженерный математический метод, обладающий фундаментальными обобщениями для различного класса задач, поэтому он может позволить решить задачи оптимизации на высоком уроне.

      Существует несколько вариантов метода конечных элементов с точки зрения его математической формулировки: вариационный МКЭ в виде метода Ритца, метод Галеркина, метод коллокаций, метод наименьших квадратов, метод штрафов. метод невязок. Точность решения с помощью метода конечных элементов, как известно очень высокая и зависит от возможности уменьшения невязки решения. что в отдельных случаях, особенно, для задач на собственные значения, удается достигнуть.

      Метод конечных элементов значительно глубже и точнее, чем известные методы исследования операций, поэтому он очень прогрессивен и перспективен. Различные варианты МКЭ имеют свои особенности, которые необходимо учитывать, поэтому далее дается краткая характеристика основных из них.

      Метод Ритца отличается заменой величины невязки в вариационной задаче конечно-элементным пространством или последовательностью конечно-элементных под-пространств и специально подобранными пробными функциями. На каждом подпространстве минимизация функционала приводит к решению системы линейных уравнений. Апроксимация Ритца—это функция, минимизирующая исходную искомую функцию на области определе- ния. Система линейных уравнений в данном случае решается методом исключений Гаусса. Принцип мини-макса характерен для случая решения задачи на собственные значения, при котором определяются приближенные значения функции.

      Метод коллокаций подобен методу Галеркина. При нем такой выбор пробных коэффициентов, что уравнение определяется точно в характерных точках. Эти определенные точки коллокаций берутся в некоторых точках полинома Лежандра, поэтому для данного случая алгебраические уравнения имеет меньшее число членов, чем в методе Галеркина.

      При методе наименьших квадратов определяется рекурентная функция на безе уравнения Эйлера-Лагранжа более высокого порядка чем исходное. Экстремумы исход-ной и данной рекурентной функции совпадают. Вариантом этого является метод штрафов с интегральными функционалами.

      Полудискретный метод Галеркина требует интегрирование функции по частям, использование граничных условий типа Дирихле и особой формы записи самой модельной задачи. Этот метод приводит к системе обыкновенных дифференциальных уравнений. Параболические уравнения с частичными производными и соответствующие им системы нового порядка по времени наиболее вероятно