Название | Фрактография в материаловедении |
---|---|
Автор произведения | Ангелина Ковалева |
Жанр | Учебная литература |
Серия | |
Издательство | Учебная литература |
Год выпуска | 2014 |
isbn | 978-5-7638-3114-6 |
Рис. 2. Образование поры на пересечении попеременно активируемых плоскостей скольжения
Особенности производства и эксплуатации металлических материалов способствуют возникновению газовых пор (пузырьков), причем давление газа может быть существенным.
Модель заторможенного сдвига. Эта модель, подобно предыдущей, предполагает блокировку дислокаций барьером. Отличие ее заключается в том, что в голове дислокационного скопления возникают не только касательные напряжения интенсивностью nτ, но и значительные нормальные растягивающие напряжения в области под плоскостью скольжения. Эти растягивающие напряжения максимальны на плоскости, составляющей угол 70° с плоскостью скольжения (рис. 3).
Рис. 3. Схема зарождения трещины у вершины дислокационного скопления [3]
После достижения количества дислокаций в скоплении до нескольких сотен нормальные напряжения превышают прочность материала на отрыв (теоретическая прочность), и появляется трещина.
Модель Коттрелла. Этот механизм можно использовать для описания процесса образования трещин в металлах с ОЦК (объемно центрированной кубической) решеткой. Возникновение трещин, как и в предыдущих случаях, связывается с необходимостью формирования дислокационных скоплений. Однако в модели Коттрелла не требуется наличия в исходном состоянии готовых барьеров для дислокаций. Препятствия, а затем дислокационные скопления и трещины образуются в результате протекающей пластической деформации.
Рис. 4. Схема зарождения трещины в ОЦК металлах [3]
На рис. 4 показана схема образования трещины по этой модели. В растягиваемом образце происходит перемещение скользящей дислокации по пересекающимся плоскостям (101) и (101) (это плоскости наиболее плотной упаковки в ОЦК кристалле, и именно они являются плоскостями легкого скольжения). При встрече этих дислокаций возникает новая дислокация, расположенная в плоскости (100), не являющейся плоскостью скольжения. Дислокация встречи блокирует обе плоскости скольжения, что приводит к скоплению дислокаций и образованию зародышевой трещины в плоскости скола (001).
Модель образования трещины у субграницы. В некоторых случаях для зарождения трещины необязательным является наличие дислокационного скопления. Например, в металлах с гексагональной решеткой (Zn) при низких температурах возможно возникновение трещины в результате перерезания малоугловой границы в процессе сдвига. На рис. 5 показано образование микротрещины в результате сдвига, разделяющего малоугловую границу (с углом разориентиров-ки приблизительно 5°) на две части. Такое