Thermoelectric Microgenerators. Optimization for energy harvesting. Gennady Gromov

Читать онлайн.
Название Thermoelectric Microgenerators. Optimization for energy harvesting
Автор произведения Gennady Gromov
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9788381550840



Скачать книгу

η at maximum power mode and at maximum efficiency mode are also close to each other. It can be shown if the corresponding values mmax and mopt to apply in formula (4.1), respectively, then

      Choosing of practically optimal load resistance between maximum power and maximum efficiency modes can be in the range (Fig. 4.1).

      Figure. 4.1 Dependence of the efficiency η and power P related to Psc vs ratio m of resistances for two main generator operation modes – maximuum power (Pmax, mmax, ηmax) and maximum efficiency (Popt, mopt, ηopt).

      In practice, use the electric load from this range (4.8) turns out to be more comfortable than to select optimal electric load with exactly the specified value.

      From the formula (4.1) with use of (4.3) it can be build a useful table for estimates of the absolute value of the maximum efficiency ηopt of thermoelectric generator depending on temperature difference ΔT (Table 4.1).

      Table 4.1 Dependence* of maximum efficiency ηopt vs temperature difference ΔT on a generator.

      The common conclusions from formula (4.1) and Table 4.1 are the following:

      – in practice, the efficiency ηopt is almost a linear function of the temperature difference ΔT.

      – one degree of the temperature difference ΔT gives about 0.05% of maximum efficiency ηopt.

      Efficiency and Carnot cycle

      Useful information on the efficiency of thermoelectric generator should be of the following formulas for two marginal efficiency modes: the maximum efficiency mode ηopt and the maximum power mode ηmax.

      For these modes the efficiency η can be written as the following:

      – for maximum efficiency mode ηopt

      – for maximum power mode ηmax

      In both formulas (4.9) and (4.10) the first fractional multiplier is, generally speaking, the ideal Carnot cycle efficiency (T/Th). The second multiplier – thermoelectric factor reduces ideal efficiency of the Carnot cycle.

      So, near room temperature (Tc≃ 300K) and typical Z≃0.003K-1 we have an numerical expression for the maximal efficiency ηopt

      As for the mode of maximum power efficiency ηmax, correspondingly:

      In other words, state-of-art thermoelectric microgenerators provide efficiency only 15.5—16% of the ideal Carnot cycle efficiency.

      Here you can make an important note about the maximum possible efficiency for any heat engines used in waste heat recycling applications (energy harvesting).

      Namely, the ideal heat engine working by Carnot cycle near room temperature provides efficiency only about 0.33% per degree of temperature difference (4.11).

      Thus, this is the absolute maximum.

      According to Carnot’s theorem, such wording [22]:

      “Maximum efficiency of any heat engine may not exceed the efficiency of Carnot heat engine, running at the same temperatures of the heater and cooler.

      This is an important point to general understand. To avoid posing unrealistic tasks to retrieve large efficiency with thermoelectric generators – larger than limited by the ideal Carnot cycle.

      This issue will be discussed further in Chapter 7.

      Chapter 5. Optimization of thermal resistance

      Introduction. In this Chapter optimization of use of thermoelectric generator by coordination of thermal resistance of elements of design of the generator device are considered. As it appears, coordination on thermal resistance is in many respects similar to coordination of electric load resistance. Namely, there is an optimal solution with maximum efficiency at a certain ratio of thermal resistance of the generator module and other elements of a design.

      Thermal resistance

      Working parameters of a thermoelectric generator is determined by temperature difference ∆T that is created when heat is passing through the generator.

      In basic formulas for thermoEMF E, efficiency η and net power P the working temperature difference ∆T is mentioned that is created directly on the sides (hot and cold) of the generator module.

      In practice, however, this working ∆T is less than total temperature difference ∆Ts that is created at generator device by heat source relating to the envirnment, where heat is dissipated (Figure 5.1).

      Figure. 5.1 Simplified schema of generator device in working arrangement with interfaces and heat sink.

      Total temperature difference:

      where Th – temperature of heat source; Ta – ambient temperature.

      Working (net) temperature difference ∆T on generator module is always less than total value ∆Ts:

      This is due to the fact that in the design with thermoelectric generator inevitable parasitic thermal contact resistance at the crossings of the design. Particularly thermal resistance of heat sink is most important, the heat which dissipates into the surrounding ambient (Fig. 5.1).

      In general

      where Ȓs – total thermal resistance of generator device; Ȓ’TEG – thermal resistance of working thermoelectric generator module; Ȓc -thermal resistances other items of the generator device.

      Presence of parasitic thermal resistances Ȓc besides total thermal resistance of generator device Ȓs reduces working temperature difference ∆T on TE generator module in relation to the total difference ∆Ts and, consequently, reduces its effectiveness.

      Taking into account formulas (2.24) and (2.25)

      where T’C – temperature on cold side of thermoelectric generator; ȒTEG – thermal resistance of thermal conductivity of the thermoelectric generator.

      In practical