Незабываемые числа. Как запомнить пароль, пин-код и день рождения любимой бабушки. Анатолий Верчинский

Читать онлайн.



Скачать книгу

или другим удобным Вам способом.

      Примечания

      1

      Произведение первых подряд идущих n натуральных чисел обозначают n! и называют «эн факториал».

      2

      Произведение первых подряд идущих n натуральных чисел обозначают n! и называют «эн факториал».

/9j/4AAQSkZJRgABAQIAJgAmAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCAErAk8DAREAAhEBAxEB/8QAHgABAAEEAwEBAAAAAAAAAAAAAAcDBQYIAgQJAQr/xABdEAACAQMDAgQDAwYJBAsMCwABAgMABAUGERIHIRMiMUEIFFEyYXEVI0JSgbQWMzhicnaCkaEkQ6KzCRcmU5KjsbLBwtIYNDU2RFZkc3ST0eIlRVRVZWaFlKTD4f/EABwBAQABBQEBAAAAAAAAAAAAAAAGAQIDBAUHCP/EAEgRAAEDAwMCAwQGBggEBQUAAAABAgMEBRESITEGEyJBURQyYXEVIzRCgbEWJFJykaEHMzVTkqKywSVigsImQ0RU0WNzo+Hx/9oADAMBAAIRAxEAPwD1ToBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUBGvxNDf4buq4P/mRnf3CaqpyD8/yxx8f4tP+DWRSviODQRs38Wvp+qtY8FU1KbD9DIYzofj4Ef8A3/ceq/0anFgh10+SN3Z/bnwSJ8lGw/io1/oqtd7tN9Dmd5yn35WOMHaOMj71q5ImovuFNZwNpG/fw0/4NZFbkos2DhFZw8l5Rx/2kqnawWd/Ox2ls4z2EcW39GrdLV2Nhkmk+m0P2jGu47D8Kt7TUMqTZKsVvF+nGu9YlQrrPk1vD7RKfv40Kdw4JDuO0a7f0aFySnNrNQwJjTb+jWLTlTZR+yGp+vbZP4fZ+JY4/wDwnce386vOKxmmZ/zJBA/MSIW2Kztw20ixdx9a1sYNtibHfTExTIHtYEcemx9Cfuq3UvmbDI3OTwlC5xsca8mg47dipXsD91XNc77piexW+8Uo7K3D7tCvcdvLV2p5RpftLz4/DZG3v5LT5iOE7rGSQo79yQO5Fa1R3HNzqOva6qGiqEkkblDZLRvVmy427X2Ns5Qm/wCbSFQdtu6xE7rGN9gSq7+X1rhvmlp3ZVcnqVL7Fc4dEbu1Iu6L8C5zzPf3jXsFkbS2ZvE8KEliB9d23Jb8T+ArgVc+JO4ei2yCSio9KrqTHPqS3o3Rk1/hZs3qjFYS5xrBvlprW5EdyQF9FC7qQG2VkYBl3IGxOx9E6WuNyke1H+4fPH9IFHYYZXup2v7y5VdJh7aUktr1Ltbcoiyhl5cuyhtwN/evUmvjZGr095TxPuOVcPzjP3iMvgwkZequK5KPPr6z/eI6jdtZmiqnac7O3/BTr3F+aunx6t/ND2XqIkjFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgI1+Jn+Td1X/qRnf3CaqpyD8/3LZayF5w577irShsb0EHiaG3H/wB5Tj12/U96nfTn2RfmRe8JmqRPgdyfNagimume/wAmIo3kZF/JOwVd+K8DuPEHmXbuNwprMtTIxXNQsjibhClDn8xKjvNmb9CX8iJh27kxuQFDgHYbcSWA85C7liKo2rkXbuGVYm4904W+YzLSxL/CC/dTI4JbCcQTtt5mXsCOPc/XYjsxqiTSZ/rf8pY6Jmn+rL9YjUN5FZ3650C3mMU5jnsfCkMZZm4Nv3RuDqm30Xf1Zq34myYRyvNZ6MamzDK4h2Ddv2NW3g1yo/Yb8hTBRVxuUfE79vSmgysl2PhfmpB9qxuTSXa8lWCJd9wdtxVoTOdirNJDDC00zrHGikl2OwH3kj0FYpHsh8bzcijfMqMjTKmr2v8ADX8uqctm2CRR3l47xxseL7HvuYx3XfbsD+NeYVFS2eZ6s9SdLZamlp2SzJhMGLmzNuT4vq3esaO2NN0SmRaYxzZS5EYLgISeCxgse31Pbb8e1a75FQ7VroVqHr6IhkseKxF5a3CWuOWexswxnyV7dMF2A9V4+XfftuPX0rVTuI7Oo7SU8EsTnsblW8qYHdLAJWazY+GWIXbc7ge4J9RW+1y4TU4iMzGIqq1TljZbf5tPm+fAewPIsfp9340e3UhmpHN7yaiX9Hsbu3RpJo7G1gG7uJRGzD6EiuBcMN8KHqtgjimRNS4RPP0JIweWxICrY5EgAgHwZW3J+vKo/PBIm56fR1lFJF2IX6lTknDp5r3EaUyK2WtJ7TIYfK2nKO8iRvNz7DxkXuxQrtuAXX05HfautbK+Sglbng8+6k6dg6hhetEmHplNLvP4p8fQkM6Z07kdp8JcLd465VXglSVZFKk9hyHrsff19jXqtLdGVNOmHHztc7NLb6taepZpVDTL4MeT9UMJJ5gp1/ZbD7jcp/8ACti1rqt1T8nfkpo3NqJV06N9W/mh7OVECQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQEa/Ez/ACb+q/8AUjO/uE1VTkqnJ+fushe4+Nvud/TbvQobF9Ayw0NI6/o5Gcj/AEKnHTX2VfmRa757+x32stKLqmXS4nygyEVq97zN5IIt+XIoCG258WLkfQrWVz6eKZ0T+eS1rZdCFhk1JpS3hEjpl5Uns4b6OOHIEyi2uPCjQStIVSKU8k3VH+zyJbZlFanegwuTOkMrkO74mPkfHtFa6kvby7ikuEsLe8jaTw1cAyNLz4cC6qB+cJY9tqzyrC7GlrjH23tLna60weCxVibCwzV/C1vd3RCAPNFHA350SeIQfIzMvuBx2B71u+3xxIiMa7ZNzE6jc9c6i6p1H0+xtEC3S3F7fNj7a3KKZJHVFfnsG2CAMqjf3NHXWJEyjTB9HvRcnewOpJNRtdoMDlLIWMjQTNdJHt4yts6Dw3duQ7A9h2NbNPVNqcorTXkhdCvvcnCPWeCYZsG4ZU0+St7MrowDBeTquz92HoSQFLEAEGrVuMTlV37JlWlc1E+J3MbklyWPt8nbQmNbmNZgrMpYKw3CkqWH37D9tbcL0qG6mmKVnYXBdYHJXkw2+/6Vc9MYQtj3yqGIatvbnKXHyNpG7QWNyySxq/kZ1VXbnt2CJuu/87evNeqb5GsnsDOfM9f6M6fckSXNU1Kn8vj+Bg+axN7k5BeZWeNBxLwq7cXKN3DD2VWI9/Mdu/aojHMyH6uLld1JjcKOornd+q97GE+Ri13p/wCQm3uFgjkUcyWHJUHt+P4VuNm1IRia3sgdlx2rK1kaNHyOReWxuVaQWttxiDn07+mwP4VY5HONiFGsTEr8N9PX4FfUl9BnLC3xeHlRMbbjaQwq20kvvtt2Kj6ntvyrHAxWPy4y3SqbVQNgpk8KGI5IWTxeFjIY4ILZAzSNyaSZidj5j2A+4VvIpHJ0jRNDeU5OhZwmSfyE7e5B3IH4Vnf7prwxuc7YkHCaZyVxDHe425jvAu23h9zy/S7HuCB9K5U9TF7shLKG3TvajqdcqhmWnLrJczZ5ePJ28m+wYgFdv7S+X8a51X20ZrjUmdomqY50iq1c3yTwuJVxmlor+1LflO1Uo4Cq0vhhSf8AOdwI1U+g3Pc1HUc96Kreck/nngokRz2udtzhqtT4oi7q5PJE3yTBpjSOd0fisfdyXtzb29+4lbHyPxeNt9uYVfI8TDjtInqfUD1rUuSVdNEx8cmMqmSI1FdS3maoidG1yImz0T4cKvkvwNbvgqYN1IwjsN2OvLP/AF8Ve82ByrZnrnK6X5/wqfM97XNfHj3Ufj+Z7L1GDsCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQCgFAKAUAoBQEbfEx/Jw6rf1Izv7hNVU5KpyeALjYA1kLlKb8FBY+lCi8Gwvw/x76InU78TkZz67foR+9Tjpz7KvzIzdftKfIyK46eYpsjJmvnL78pm+a8M/iMV7rwMJi+wV8MhCdt9gO9b77VHJJ3FMKVrmt0lrHSbEx4uxsLC+uIPk4tjL4KSPO5mjlDyg9mb80o4ntt2/RrXdZ2rCzHO5eyvdj3Tu2nTuPHeBcYbP3dneRtOZJxbRNHMs0viOgg4hEVX2KKnHj6Hfes30c5jMRu3Mb6lH7uac4unFmkLW7ZW5ZGxl1jgWQM7PcsXnuGcdy7tt5fQAVlZbWouJHcoV9tTZEbwVbDphh8dfDIwXkstz+U4L/x3jBkCxKAsQ2+yCRyY/XasDLVHEqOartlQrJWOcxfkXNNH2CRXUF6Ddi4yUuWClmTwpXYe6Nudttu/wBa3o6RrWrH67mrJK5cKY43S/Gg3e2SuOEimO0/yePeAfMrdbMf/KD4gH8b6JvWktqarlX1M/t7kaiehk2ltOR4DGHHw3HjK80tw7iNYx4kjl34ovljTcnig9tzXRpIm0kOnUack3fVVQ7mQmdeNvFMIuJ3m