Физика на ладони. Об устройстве Вселенной – просто и понятно. Венсан Бокео

Читать онлайн.
Название Физика на ладони. Об устройстве Вселенной – просто и понятно
Автор произведения Венсан Бокео
Жанр Физика
Серия
Издательство Физика
Год выпуска 2016
isbn 978-5-389-14907-6



Скачать книгу

рисунке представлены положения машины до и после поворота. Тело человека, находящегося внутри (кружок), следует по прямолинейной равномерной траектории (пунктирная прямая) и оказывается прижатым к правой дверце.

      Когда машина тормозит, наше тело наклоняется вперед, потому что мы не «хотим» терять равномерную скорость, с которой двигались (➙ рис. 1.4). В любом случае наше тело стремится сохранить прямолинейную равномерную траекторию.

      Рис. 1.4 – Машина в момент торможения

      На рисунке представлены три положения машины в течение одной секунды. Между 2-й и 3-й позицией машина начала тормозить. Но тело человека, сидящего внутри (кружок), стремится сохранить прямолинейную равномерную траекторию, поэтому человек оказался прижатым к лобовому стеклу.

      Очень необычная система отсчета

      Выйдем из машины и положим мяч на горизонтальную земную поверхность: он останется лежать неподвижно там, куда его положили. На самом деле это частный случай «прямолинейной равномерной траектории», о которой уже говорилось раньше: слово «равномерный» означает, что скорость остается постоянной. А если скорость нулевая, она останется нулевой…

      Проблема в том, что это справедливо только для земной системы отсчета. Сядем снова в машину и положим мяч на плоскую поверхность. Если машина повернет влево, наш мяч покатится вправо, так же как мы наклоняемся к правой дверце. Это видно на рис. 2.3: мяч (кружок) в определенный момент оказывается в правой части машины. Также если машина затормозит, мяч покатится вперед, как мы наклоняемся к лобовому стеклу. Это также наглядно показано на рис. 2.4, где мяч на секунду оказывается перед машиной.

      Таким образом, в системе отсчета машины неподвижный предмет не остается неподвижным: поскольку он испытывает ускорение, его движение перестает быть прямолинейным и равномерным.

      То есть законы движения зависят от системы отсчета, а прямолинейная равномерная траектория изолированного объекта применима лишь в некоторых особых системах отсчета. Эти особые системы отсчета очень важны, ибо мы видим, что наша старая добрая земная система отсчета на первый взгляд относится к этой категории. Такие системы называются «инерциальными системами отсчета».

      Таким образом, движение изолированного объекта в инерциальной системе отсчета является прямолинейным и равномерным по определению этой системы отсчета.

      Какие системы отсчета являются инерциальными?

      Загвоздка в том, что земная система отсчета не такая уж инерциальная. Покатим наш мяч по плоской поверхности в несколько километров длиной, предположив, что трения не существует: если долго смотреть на его траекторию, мы увидим, что мяч немного отклоняется вправо и описывает широкую дугу. Причина этого в том, что Земля вращается вокруг своей оси: именно это явление заставляло наш мяч катиться вправо в машине, которая поворачивала налево.

      Мы постараемся более