Думай медленно – предсказывай точно. Искусство и наука предвидеть опасность. Дэн Гарднер

Читать онлайн.



Скачать книгу

может принести большую выгоду, пока однажды не обернется разорением. А предсказание, что динозавры – верхняя ступень пищевой цепочки, было надежным на протяжении десятков миллионов лет, пока какой-то астероид не запустил катаклизм, открывший экологические ниши для крошечных млекопитающих, которые в конце концов эволюционировали в особей, пытающихся спрогнозировать будущее. Если не вспоминать о законах физики, то можно сказать, что универсальных констант не существует, а значит, отделение предсказуемого от непредсказуемого – сложная, практически невозможная работа.

      Метеорологи знают об этом лучше, чем кто бы то ни было. Они постоянно делают прогнозы и проверяют их на точность; именно поэтому мы знаем, что прогнозы на день-два вперед обычно точны, а на восемь – не очень. По результатам анализа собственных предсказаний метеорологи корректируют свои представления, как работает погода, подправляют модели, которыми руководствуются, и пробуют снова. Прогноз, замер, исправление. Повторить. Идет непрестанный процесс пошагового улучшения, объясняющий, почему прогнозы погоды хороши и постепенно становятся все точнее. Однако у этого улучшения есть предел, потому что погода – классическая иллюстрация нелинейности. Чем дальше прогнозист пытается заглянуть, тем больше у хаоса возможностей взмахнуть крыльями бабочки и смести все ожидания. Увеличение вычислительной мощи компьютеров и усовершенствование моделей прогнозирования могут сдвинуть пределы предсказаний в чуть более отдаленное будущее, но постепенно прогресс замедляется и отдача от него скатывается к нулевым отметкам. До какой степени еще удастся улучшить результаты прогнозирования той же погоды? Никто не знает. Но представление о текущих границах наших возможностей – уже успех.

      Во многих других важных областях приходится продвигаться буквально на ощупь, в темноте. Там прогнозисты понятия не имеют, насколько точны их предсказания на короткие, средние или длительные периоды, как не знают и того, можно ли в принципе их улучшить. Максимум, что у них есть, – смутные предположения. Дело в том, что процедура «прогноз – замер – исправление» результативна только в узких границах высокотехногенного прогнозирования. В частности, ей следуют макроэкономисты из некоторых банков, маркетологи и финансисты крупных компаний и аналитики опросов общественного мнения, такие как Нейт Сильвер[8]. Чаще же всего бывает так, что прогнозы делают, но дальше с ними ничего не происходит. Их точность если и проверяется, то определенно не с той частотой и тщательностью, чтобы можно было делать какие-то выводы. Каковы причины этого? Самая распространенная – особенности спроса на такие прогнозы. Их потребители: правительства, бизнесмены, публика – не требуют свидетельств точности. Поэтому такие прогнозы никак не оценивают, а значит, и не исправляют. Но без исправлений не может быть никакого улучшения. Представьте себе мир, в котором люди любят бегать, но понятия не имеют,



<p>8</p>

Чтобы найти островки профессионализма в море недобросовестности, обратитесь к следующим книгам, посвященным концепциям и способам прогнозирования: Nate Silver. The Signal and the Noise: Why So Many Predictions Fail – but Some Don’t. New York: Penguin Press, 2012; Principles of Forecasting: A Handbook for Researchers and Practitioners / ed. J. Scott Armstrong. Boston: Kluwer, 2001; Bruce Bueno de Mesquita. The Predictioneer’s Game. New York: Random House, 2009. Увеличить количество этих островков, как выяснилось, сложно. Часто в книгах практически не встречается переход от учебных статистических концепций (таких как регрессия к среднему значению) к проблемам, с которыми студенты могут встретиться позже в жизни. См.: D. Kahneman and A. Tversky. On the Study of Statistical Intuitions // Cognition. 1982. № 11. P. 123–141. Такое положение вещей крайне усложняет попытки проекта «Здравое суждение» научить людей думать как суперпрогнозисты.