Название | Думай медленно – предсказывай точно. Искусство и наука предвидеть опасность |
---|---|
Автор произведения | Дэн Гарднер |
Жанр | Самосовершенствование |
Серия | |
Издательство | Самосовершенствование |
Год выпуска | 2015 |
isbn | 978-5-17-109433-1 |
Некоторые называют мудрость толпы чудом агрегации, но это явление легко избавить от мистического налета. Главное – понять, что полезная информация часто широко распространяется, и там, где у одного человека имеется ее обрывок, другой обладает более важным кусочком, третий – еще несколькими и т. д. Когда Гальтон смотрел, как люди угадывают вес обреченного быка, он наблюдал за тем, как они ретранслируют имеющуюся у них информацию в цифры. Мясник, смотревший на быка, передал информацию, имевшуюся у него благодаря тренировке и опыту. Человек, регулярно покупавший в лавке мясо, добавил свою информацию. То же самое сделал и человек, который помнил, сколько весил бык на прошлогодней ярмарке. Таким образом все и сложилось. Сотни людей вложили полезные данные и вместе создали фонд информации гораздо более ценной, чем обладал каждый из них. Конечно, вместе с тем они также поделились мифами и ошибками – и тем самым создали фонд неверной информации, такой же большой, как первый. Но между этими фондами большая разница. Вся ценная информация указывала в одном направлении, на вес 1198 фунтов, а ошибки имели разные источники и указывали в разных направлениях. Кто-то предположил результат выше правильного, кто-то – ниже. Таким образом, ошибки перечеркнули друг друга. Накопление ценной информации и обнуление ошибок дали итоговый результат, оказавшийся потрясающе точным.
Эффективность агрегации прогнозов зависит от того, что именно вы объединяете. Агрегация суждений множества людей, которые не знают ничего, произведет большое количество ничего. Агрегация суждений людей, которые знают немногое, – уже лучше, и если их наберется достаточное количество, она может добиться впечатляющих результатов. Однако агрегация суждений того же количества людей, которые знают многое о многих разных вещах, более эффективна, потому что общий фонд информации становится намного больше. Агрегация агрегаций тоже может продемонстрировать впечатляющие результаты. Хорошо проведенный опрос общественного мнения агрегирует множество информации о намерениях избирателей, однако агрегация опросов в «опрос опросов» собирает множество информационных фондов в один большой фонд. Это и есть суть того, что делали Нейт Сильвер, Сэм Вонг и другие статистики во время президентских выборов 2012 года. Такой опрос опросов может быть объединен с другими источниками информации, например в нечто вроде Polly Vote – проекта академического консорциума, который предсказывает результаты президентских выборов, агрегируя различные источники, включая опросы избирателей, суждения политических экспертов и разработанные политологами количественные методы. Проект работает с 1990-х и имеет хороший послужной список, часто придерживаясь кандидатуры, которая впоследствии становится победителем, даже если результаты опросов изменились, а эксперты передумали.
А теперь посмотрим,