Название | Удивительная логика |
---|---|
Автор произведения | Д. А. Гусев |
Жанр | Философия |
Серия | О чем умолчали учебники |
Издательство | Философия |
Год выпуска | 2013 |
isbn | 978-5-91921-215-7 |
Чтобы лучше уяснить, что такое суждение, рассмотрим несколько примеров.
• Неужели ты не знал, что Земля вращается вокруг Солнца? (Риторический вопрос – является суждением).
• Прощай, немытая Россия! (Восклицание – суждением не является).
• Кто написал философский трактат «Критика чистого разума»? (Вопрос – суждением не является).
• Логика появилась примерно в V в. до н. э. в Древней Греции. (Повествование – является суждением).
• Первый президент Америки. (Понятие – суждением не является).
• Разворачивайтесь в марше! (Восклицание – суждением не является).
• Мы все учились понемногу… (Повествование – является суждением).
• Попробуй-ка двигаться со скоростью света! (Риторическое восклицание – является суждением).
• Средняя школа № 469 г. Москвы. (Понятие – суждением не является).
• Как тебе только не стыдно? (Риторический вопрос – является суждением).
• Каким образом решается знаменитая задача о квадратуре круга? (Вопрос – суждением не является).
• Общая теория относительности А. Эйнштейна. (Понятие – суждением не является).
• Почему нельзя делить на ноль? (Вопрос – суждением не является).
• Бескрайние просторы Вселенной. (Понятие – суждением не является).
• Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов. (Повествование – является суждением).
3. Любое суждение является истинным или ложным.
Если суждение соответствует действительности, оно истинное, а если не соответствует – ложное. Например, суждение Все розы – это цветы является истинным, а суждение Все мухи – это птицы – ложным. Надо отметить, что понятия, в отличие от суждений, не могут быть истинными или ложными. Невозможно, например, утверждать, что понятие школа – истинное, а понятие институт – ложное, понятие звезда – истинное, а понятие планета – ложное и т. п. Но разве понятия Змей Горыныч, Кощей Бессмертный, вечный двигатель не ложные? Нет, эти понятия являются нулевыми (пустыми),