Название | Удивительная логика |
---|---|
Автор произведения | Д. А. Гусев |
Жанр | Философия |
Серия | О чем умолчали учебники |
Издательство | Философия |
Год выпуска | 2013 |
isbn | 978-5-91921-215-7 |
Определения бывают реальными и номинальными.
Реальное определение раскрывает содержание понятия, обозначающего какой-то объект, т. е. оно отнесено к объекту. Например: Термометр – это физический прибор, предназначенный для измерения температуры, – реальное определение.
Номинальное определение (от лат. nomen – «имя») раскрывает значение термина, которым выражено какое-либо понятие, т. е. оно отнесено к термину (слову).
Например: Слово «термометр» обозначает физический прибор, предназначенный для измерения температуры, – номинальное определение.
Как видим, принципиальной разницы между реальными и номинальными определениями не существует. Они различаются, как правило, по форме, но не по сути.
Существует несколько способов определения понятия, но среди них особо выделяется классический способ – когда определяемое понятие подводится под ближайшее к нему родовое понятие, после чего следует указание на его видовое отличие. Например, определение: Астрономия – это наука о небесных телах построено по классическому способу. В нем определяемое понятие астрономия сначала подводится под ближайшее к нему родовое понятие наука (астрономия – это обязательно наука, но наука – это не обязательно астрономия), а потом указывается на видовое отличие астрономии от других наук: о небесных телах. Фактически все определения, встречающиеся в научной, учебной и справочной литературе, например в толковых словарях, построены по классическому способу.
Пользуясь классическим способом, вы сможете дать точное и правильное определение любому понятию, конечно, если определяемый объект или термин вам хорошо знаком и вы знаете, что он собой представляет или что означает соответственно. Например, требуется дать определение понятию квадрат. Следуя классическому способу, сначала подведем его под родовое понятие: Квадрат – это геометрическая фигура, – а затем укажем его видовое отличие от других геометрических фигур, которое заключается в наличии равных сторон и прямых углов. Получаем определение: Квадрат – это геометрическая фигура, у которой все стороны равны и углы прямые.
Давая определение понятию квадрат, мы могли бы подвести его под более близкое родовое понятие прямоугольник, и тогда определение получилось бы следующим: Квадрат – это прямоугольник, у которого все стороны равны.
Однако верно и приведенное выше определение квадрата, которое также раскрывает содержание соответствующего понятия.
Существует несколько логических правил составления определений. Нарушение хотя бы одного из них приводит к тому, что содержание понятия не будет раскрыто и определение станет неверным. Рассмотрим эти правила.
1. Определение не должно быть широким, т. е. определение не должно превышать своим объемом определяемое понятие. Например, определение Солнце – это небесное тело является широким, так как определение