Траблшутинг: Как решать нерешаемые задачи, посмотрев на проблему с другой стороны. Сергей Фаер

Читать онлайн.



Скачать книгу

rel="nofollow" href="https://www.litres.ru/pages/biblio_book/?art=33573329&lfrom=203296966">купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      1

      Три крупнейшие консалтинговые компании: McKinsey, Boston Consulting Group и Bain & Company.

      2

      www.actr.pro/book/01

      3

      www.actr.pro/book/02

      4

      www.actr.pro/book/03

      5

      www.actr.pro/book/04

iVBORw0KGgoAAAANSUhEUgAAAhcAAANSCAYAAADWO+wjAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAHg3SURBVHhe7d0HuBxl+f5xomJB/WFXFBFEFLADAgJSBMEGKBIp6TlJzklChCQgJUDoRQSkV0UBQTqE3gSpghCpUpReQwfpJed/3+Mz8393dnbP7skJyQnfz3U918y8bWfrPDszOzsfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADzjmuuueYDV1111eKarvXPf/7zI1Gccd211177g+uuu+7LN9xwwwJRDABA/zR48OAPKhYbNmzYskOGDFluk002WWLgwIELRjX6iB7jbRUv6THuVuwXxRktbxXlLysOjuLZSuuykm7r0I033vjQiRMnHnr88ccfeuKJJ345qgEAaM/UqVPfM2rUqJ+PHj36z4r/jBkz5gVFt0PLL2l6v+Lszs7OTSZMmPC+6IZZoMfyB/ljHHG8HuvNFEcpXk/KR0SX2UrP/3Dfntaru6Ojo1vJhmOlqAYAoHXaoKypuD42ZK3EP7UB+nF0Ry8NHDjw3Uoizq14fItQ/Y2azpbDIkomFtbzuL7G305xiG7ruvx2k7hU5Qcqfq34ybhx4z4T3QEAqKYNxmTFWxUblZ5ipmL7iRMnfiCGQi+MHz/+43r8zy89tlmo/O/a+C8RTfuMkooVNf6JiqfT22sxntB6/UljLBvDAQDw/w0ZMmSLio1HGjObJR6qe0MbGY7Jz6LYg7GewnsITlEcqsf1l7MjcdPzNlXjv1p+LtsNjfGyYgcNOeB/IwMA3vFOOumk1YYOHfpm1YZDcbo2HBv726mmy2h5A00PUzyTttPypjFcUxMmTPg/tV9S433LyYjm+2Q3/8iRI7/gMfXtfmnNfziK3zZdXV2fUnwt1mFRJwlRNVfS83Vw+vz1RWjMP8Twbyvd9iJ+3Ds6Or6h+HQUz5KxY8d+NHk+PxfFAIBW3Hbbbe8dN27c9foQLW8onlSsF83qqG5xxTnRdtsobkjtllMco7hX7d9wP8Vrmr9b0yP9IR5N62iD8SW1u6YUWTKjD/5NNH+l4nmPqelbins8pvotlQ1QQW1WUpTHbBgab+/oWkO37/MUzlObx3z7ET4B9maV7dTsvAS1WTO9DYceh69GdQ2PlbZT34uHDRtW85PVVqnvJEXxXKehse9QHKf5y8t1irMVJ6neJ/mW67JQ3eS4mTp+PlQ/SuG9Mmcq8vszTbGXYi01a2nvRySpk9TnH5o+l9z+DMVlel6GTp069V3RvI7a7K9IH8/TXa5+S2j+SJU9kI+p8CGjy1XWUgINAO94Z5xxxrqDBg0qNg4R3uivEU0aUrv59WG8YSw2pHbba7ymu99V/5Jis+hSw4lHRfsdFLuXy0vxrDcyMUwN9V2von3DUPsLo2tGZQsqTkrbNIh7FatEtxq6X4NKbR3fjeqCbnutinZvem9JNGmZHo/PqW+xMU7iLj8m+a9/1G6TchvVf8d1gwcP/qDmN1Y8WG6jeEH3azG3y3lvgtpeqOjxEIza/E23/c3oWknjey/aLVX9S3HBiBEjPhndaqiunDzdr3HX0fTxUnlNKKE7af/99+9VUgcA7xi77LLLCfoArvkA1Qd3n11LQWPtmY7dU6h9Z3QtaOP0jYq2j1SUVYY2Gj+PoQq6nZ9UtW0Uaj8tumYbV5VdWm7TJPzNd7noXlDZRkmbLHQ7K0R1Jm7rX+V2ihcabTibUb+tS+M4/l1OCLSB7yi307rVJJzq82WVVSUYU6NJRssLqN19pTbN4nHdfuXJq048NNaMij6VobZXei9HdC+o7oJSW+9terZUVhcjR47snjJlyrTu7u73xFAAgNRjjz32QW0gHtAHcPoB+pqPNUeTWaKx1k3GzcO/LPFhhCP8wV+q88bgJW+0YohMg+SiCPXxoZUrNG20u/4Rf3uO4TJq21ZyoTgrurrvbyvqn1b5nzX9vaa3l+ocNwwcOPC9MURGZT0mFyrbu9wmorfJRV1SVJV8tZJcmMqGlNspri4fklC7vSraNYtTo2vBJ7VqnOnltiq7U3G04gTFkxX1e8YQBZWXk4s0vGfnWvX7h6Jub4v39B177LHjYygAQGr69OlL6JuxL4pVfHDqw/SWvjgZ0RtSjXdDaeznFTXncah8vMIJR9rusKjONEkuXlSM8Ld7t/OJnOo70rdTaucxa84L0XJVcrG9NrTe5b5CGipbMU94tC4+/+PlUr/bFEtmA4vmF1D8MeqK0Bi/jCYZlTVNLrS8ipbTC2il0XZyMW7cuA9pvPRcAt/egy6PJoVWkwuf+Kjymg26lh8unw+i8u+q/FZND9LYPuTyXcVymv+xpj7HofxLpFf0ePW4N0VxTHoCr9osobHKyd2zGmvhaJJRWaPk4mT1X9xtnCBpPO8puSRto7G6db/vmzFjRt3jBgDveDfddNMKQ4cOLW/YL4rqWaIP4O+n40ZsHdU1dJv+xl+00/Kj6a7sBsnFTG+kokkN1W2kMcobq+vTpEn1VcnFBlHdkPrtmvbR8uuKmr0NpjonGP8utT0jqjMqa5hcaN6HEpqdV9B2cqHxFlK/J0rj3BDVNao25OpfdR7OANX9s9TuVW18Px/1GT/2+fkcVdRvj3QMh15DxR4Vb+g17t/Tei3fqSTm/dGkoLqqpGxMVGe0WJVcXFyVWDv5Ut3NaVsltN2XXHLJD6IJACB3yy23fFfJRfrh6g/smhMXe0tj7Vwa9xl/y43qGtqIfC9t69DGbeWorkwuNN5VUV1J9ZeV+jyXbvBUX5dcqGzjqG7EG9IrSn3+GnV1VLdL2lZxf7qXQMvNkotGh0PyaDu5UJ9PaPz0Vy2+vZuiukaryYU3xiq/s9TumfJhqJzqF9Dz7XM18r1CX/bhDpUvouWaQxBa3jy6uZ/ry3vZfh3VdVRXc4VRLR8XVRmV1SQXqvevjFaL6jpaz1+m7f1fLwcffPD2UQ0AyN18881f8Z9hpR+aipurvr21S+P4qo/FuPrgfkZxtOaPTENlR2jqXdE1exq0cSt+5dEgudg1qiupfkqpvccvTqrUctvJhXe/q51//ZH2+5f6HaZpzf1SHK7yv2majv+6EpwvxnB+jOqSC23EvqrwoZn857qOVxQ1h5gUbScXkQj40EQ6jn9RU3cdh1aTC5X5J8k1ryEt31Heo6Dn0D9D9fVR/lNq7/vmPTxnV4xTHMrS+qye1kX9RZoerqh67P1z5LTtdRqm+JmrysrJxaNVh4dyeu4/q3bFf+w4uTjiiCPmyHU9AGCudtttt31IH/oP6YM1/ZB91RuCaNJrGie7BsYsxFYxVGVy4Y1fVFfSBnp0uY/Wqfhmqvm2kwtvzNWm5pt/u6H+6TkV5eTCh6i8S9/XXUjLvRej/CuP3p7Q6WuNpOM4an7dYa0mFyqv2sNyUlRn9Fz4J569ubx4cRhNY/y0or6duCtNeLRcTi7+EVWV1MaHuYqfqTq5OPzww7NrYwAASnbeeedTtJEqPmQjav7yuzf0YX1aacy2Qv2Lb61VyYVim6iu5P7lPiorNuyabzu58EmKalP108t2oriOheZrkguN/Yai5r9FtHxPHDbYPi1X9Cq5UNLgEyjTcXwbPhyxUTTJaHlE2iZi1ajOqN8oldVd2VW3UVz7JBKyR8ttVOZfffxe4T0PF2i57lceiiK50Jjlf41tKzT+g82SC8W9A0u/5kmp/0KK4kThSC6OjWoAQOr0008fWHERrVf0YV6c89CEz0EY4z/ciuWCig+KsbKID+aB/hZbFapfy5Evjxw58gsxVKPk4ryorqT6i9P2Gvu/uk+LRnWvkgv/Fb3a3FTq438qXTO9L2m4Tm3WzpfTE1VVV3dYpBxeT7fVtOZEUkWvkgsfGlHfmvNGHBrf5xz8QbGaz41RWVe5jddfz8Wn437VHPbKQ/2vS0/cVJmV2+zkxzKaZDSmz8MoX7+iSC7882jV1xw60/IRTjryxzYN1fkx/36+HK/nZodFXtdtfDuq62iMn6ft45yLnaMaAJC677773q8P3pv14Vl8cDr0YfuYP6CjWR3VLa52p0fbaeWNhcbcMB1P4V3+Nd+OW9UguXjNG49oUkPr8xNFes6C19HnGswfTXqVXJja+PyKtM8zWo+anzmmyo9LSv2bJhca+4ho6tstnxzaq+TC4vFsdsEo/6Kkrl7r8JSmDQ9vqP55PRY1/5CqskNLbXxYqe7/ZLROH1N5eewiuXDCor41J44qLo/qSs32RKhvec+F48SoruFxdNs1v1Txr0XOO++8daMJAKDshBNO+GH5VyMR3uV9rBKF9bXR+Gp8e/SG+wCFNzRp22PT3c7+hq425Wsq+M/OfhhNCipbTnX+8PZ/VywYxYUGyYXHe1ixXr4BV9n8Wv6FpnWXcFZ5zYWUtNyr5ELtfH2Gcr/piuzaCDnvIdBj9kuV+8qUld9wVd4wuVC/e9I9Qlrus+TC1P+HGrPmz+dmMZwY1D23uo2j0nZa9uvmE1FdUNlWabuImp8uq+8OFW0OL5+I6T0vautLw9+vqFsnU3lVcuH1O0DjFf8Ho2WfsFpziE/Lnj72wAMPVP76CQAQhgwZUvXBnYb/b6TRBZ2yUP2oGC7j5Yo23rXtQxb7aP63iosU6V6Ga7VRbvcKnT5+78Sk5noLSTyXHmYx9elVcmFqe3y5r8IbV//XiK/X4ENC1yuKeo19dHpIxFTebM9FzTU31L9PkwvT4+z/bGnnMuaVoXU7X/H1GLaGyjer6HOWEtbldfsLe6rl/dSu6rVVk1zE+Rt1lxFXmfdo+BciTih88bL0Fz3+NUqXutf8IZrKKpMLh8bxOSI+D8QXz6r7HxYfRjz66KP5GSoAtEIfpjuWP0hbDfU9ruo6Fiqv2S3eSnhPSXTPNDosUlFWGRqv7pclWq9eJxfeo6D2NclDC/F0OcFRWaPkou5EQa1bnycXNnXq1HdpLF+m/UTdxsOaemOc3k5VuM39an+cHtsfx1CVfG0Rta06BOPDZD39gqQmuTCVraKo+uO1hqH1PMd7kmKIjMrrzrlIlxuFnsPurbfe+qpHHnmk7tAOAKABfcj6sMJd5Q/VJvG4+lT+m6nFxsvf5ltJBh7Rt9m6/7lokFzsozi5VFYO3+akGKaG1rnuX1F124Oiukf+R1KNcWZ5jKpQu2u0EV46uhZUvmlF+4c8djQpqLzmCpbq6xMQ2/5X1Ga04fywHoOvauw1dBs1J+TGbU5RrOb7kl9yvRXqM0RRcw5MRfiv3MvXuZgSQ9RQ3aqqq/r/lqr4ve9XdC2ovJxc3K3YXNH0n1uHDh166X777bdQDAMAaJWPYWsjM1wfpv6DMe8iLhIDLfty1zMU/tOxrfzNNLo1pbb+bwn/GsF/lFZsaDTvv1q/Q7FXo7EaJBdOGgao3+Ton47pXx2crPuw4v9GqKf6VRX+T5Ai1O9HUd0ybWh94upZcZvF+mnZFw27RjE2/fVESu1+qKhZB41Xs9cmp3F8eCFte33VnqK+ovHrfoqqdWvlF0SVtP5rKPwz23Svg/8b5mrFur4vqvdVNdPHouG1TFTvv7yfpPAfjJX/S8b/mHuWovJ8C1NdObm4z+WarqRlH2JL96p4T40Pufl/cIqTggEAvaQP00/426ym3h29ik/q1Ma+8tLOrfB5B04W9CG+msb9nsb7SrOz+q0quVD/4joY3ngnY66YnpD3dvFjovXyiamrxQZqkajql7T+Tr58/kIRuo+zfHE1JQyLOknx+JpW/q16u/ScL6bxnLz6+V+26qfRZWpfPufCJ38WiUMczvEFzVbTdMlmv/oBAPRDPSUXQLv0GmqaXAAA5nEkF+hreg2RXADAO9mIESO+qeguxQ5RDbRt+PDhfy29nnxxL5ILAHin2H777b8yZcqUu9PYYYcdfO0CoFf0Gvp96TV1OedVAMA7THd397tKUXNRJKAdfv3wegIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9C/d3d0DeopoCgBA//Xss89+ZNq0adv8+c9/3nHbbbfdccqUKXMstt9++x/HatXYbrvtflLVvs3Q8NtvpWmnxltf9/Ub22yzzUfjJmariRMnfkC3+1fF3S3EDVq3T0fXPqP7vIzG9mO8re73tkcdddS2Z5999tsVOyiWj1Vpy7nnnrucXp87zok4/fTTPx6rUee88877ZFWfqtB9HxrdWqI+o8pjNIjtzzjjjI9Etx6p/Ual/g3jnHPO+UJ0K6h8iGJq2q5Z6H5/L7r2msZZsjxuk5h61llnre9+en7+T7f/64o2cyLWze5Micp/VGrXMPQ8Lxrd2qb+PyuPVxV6vIZFl4b0uhhc1bcceu/seNddd30uurXlggsuaPl1qsfl89Gtku7ThlX9ZkeceeaZO1588cVtvdfnaQ888MDim2yySffgwYO7R44c2T1ixIg5FsOHDz8mVquG6o4tt+2DmKl4ULd5zrBhwyaMGjVqsbi5PqfbGFi67Z5ii+jaZzTmxHx8P89Dhw7NnvO3KwYNGrRdrEpb1Hdieay3K4YMGbJUrEYdPX7fqOrTIG6Ibi1R+ztK/RuG1mPx6NYjPQeXVo1RFWq7ZnQrqHxsuV0PcfvAgQPfG917RetxYsW4DUPP2Qbut+mmm36hqn4OxZ+zO1Oi8t+X2jWLH0S3tuhx+Jb6vlYaqzL0WE+Pbg2pzTVVfcvx85//vFsb/pWiW1u6urouybdJPYXu36rRrZLW99yqfrMjNt544+7NNtusrff6PO3+++9frKOj44XRo0d3jxkzZk7HIbFaNVR+eKldn4fu//OKI5RkfDluts9o/IvLt9cstB63zuqHcpnGHFd1W29X6PYnx6q0ZQ6u98xmrwXVfbWiT2XoPlwW3VqiPteXx6gKjftGO0mx+pxVHqNRaOzVolth6tSp71FdS+uWh9bvl9G9bX78NcYr5TEbhdb5oug639ixYz+vsmfLbeZEaL2OitWqobqDym0bhcZYI7q1TF+a3q9+11WNVxVq+7fo2pAf46q+5fDG9oILLujV3sqJEyeeqW1S5bjl0Po0TWDU5uRyn9kV/tK21VZbtfVen6eRXNTFs3osNo+bnmUaaxmN+WbpNnoM9ftJDNEnNB7