Число, пришедшее с холода. Когда математика становится приключением. Рудольф Ташнер

Читать онлайн.
Название Число, пришедшее с холода. Когда математика становится приключением
Автор произведения Рудольф Ташнер
Жанр Математика
Серия
Издательство Математика
Год выпуска 2013
isbn 978-5-389-14486-6



Скачать книгу

CCC получается CCCCCC, что можно упрощенно записать так: DC. Из DC при удвоении получается DD CC, что можно упрощенно записать так: MCC, а из MCC при удвоении получается MMCCCC:

      Теперь можно считать, что главная часть умножения выполнена. Осталось сделать два шага для получения окончательного результата. Согласно таинственным воззрениям древнеегипетских ученых, нечетные числа считались «добрыми», а четные – «злыми». Если в левом столбце обнаруживается четное, то есть «злое» число, то всю строчку вычеркивают, чтобы в левом столбце остались только «добрые» нечетные числа:

      «Злыми» числами считаются XXVIII (то есть 28) и XIIII (то есть 14), а все остальные числа левого столбца нечетные, то есть «добрые». На последнем шаге складывают все оставшиеся незачеркнутыми числа правого столбца, то есть находящиеся в «добрых» строчках. После упорядочивания символов мы получаем следующий результат:

      После первого упрощения получаем MMM DD CC L XX V, что при окончательном упрощении дает MMMMCCLXXV. Пользуясь современной десятичной системой, мы записываем это число как 4275, и это действительно произведение двух чисел 57 и 75.

      3

      Иногда люди думают, что математика отличается от прочих наук тем, что в ней все результаты можно вычислять с достоверной точностью. Однако это ни в коем случае не верно. Часто бывает достаточно знать приближенное значение результата для того, чтобы верно его оценить. Во всяком случае, достаточно сильно впечатляет, что приведенное в тексте простое рассуждение позволяет оценить порядок величины числа рисовых зерен на шахматной доске, не прибегая к утомительным многочасовым вычислениям и сложной компьютерной технике.

      Тот, кто все же хочет знать точный результат, должен принять во внимание следующее соображение: каждый раз, когда мы заменяем число 1024 числом 1000 = 10³, то есть удобным для вычислений приближением, мы допускаем ошибку, составляющую 2,4 процента от точной величины. Эту ошибку в ущерб числу рисовых зерен мы совершаем на 11, 21, 31, 41, 51 и 61-м поле, то есть в шести пунктах шахматной доски. Таким образом, разница между грубо прикинутым количеством риса и точным числом рисовых зерен, которые надо высыпать на доску, составляет 6 × 2,4 = 14,4 %, то есть это величина относительной разницы между 16 квинтиллионами зерен и точным числом. 15 процентов от шестнадцати составляет 2,4, то есть 15 процентов от 16 квинтиллионов составляют 2,4 квинтиллиона, которые и надо прибавить к этому количеству, и в результате мы получим те же 18,4 квинтиллиона зерен.

      Вооружившись высокопроизводительной вычислительной машиной, можно сложить 64 числа, каждое из которых получается в результате удвоения предыдущего числа, начиная с единицы. Результат в точности равен:

18 446 744 073 709 551 615,

      то есть 18 квинтиллионам 446 квадриллионам 744 триллионам 73 миллиардам 709 миллионам 551 тысяче 615 рисовым зернам. Надо заметить, что существует более простой способ получения такого же точного результата: сумма всех предыдущих чисел равна удвоенному значению последнего числа минус единица. Вот, например, сумма зерен в первом ряду шахматной доски:

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 2 × 128 – 1 = 256 – 1 = 255.<