Название | Большое космическое путешествие |
---|---|
Автор произведения | Нил Деграсс Тайсон |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 2016 |
isbn | 978-5-496-03227-8 |
Даже рассмотрев все эти звезды в ночном небе и заметив, что среди них попадаются размытые объекты, напоминающие облака тумана, мы еще не вполне представляли себе Вселенную вплоть до начала XX века. К тому времени звездный свет уже пропустили через призму, разложили и посмотрели, какими характеристиками он обладает. Тогда стало известно, что некоторые звезды можно использовать в качестве «эталонных источников света». Давайте об этом подумаем. Если бы все звезды в небе были совершенно одинаковы – например, нарезаны формочкой для печенья и заброшены на небо, – то сравнительно тусклые обязательно находились бы дальше сравнительно ярких. Все было бы просто. Все яркие звезды – близко. Все тусклые звезды – далеко. Но на деле все иначе. Среди всего этого звездного многообразия, независимо от того, где какие звезды расположены, мы ищем и находим звезды одной и той же категории. Итак, если найдется звезда, для спектра которой характерна какая-то специфическая особенность, и эта звезда находится достаточно близко, чтобы можно было измерить ее параллакс, – нам повезло. Теперь мы можем взять ее светимость в качестве отсчетной и определить яркость других подобных ей звезд как «вчетверо меньше» или «вдевятеро меньше», а затем вычислить, как далеко они находятся. Но сперва надо найти такой эталонный источник, мерило. Вплоть до 1920-х годов таких мерил не было. До тех пор мы совершенно не представляли, насколько удалены от нас те или иные тела во Вселенной. На самом деле, в книгах того времени Вселенная описывается просто как «область, заполненная звездами», о более крупной Вселенной за пределами этой области ничего не было известно.
Когда пытаешься понять звезды, непременно нужны дополнительные математические инструменты. Один из них – функции распределения. В них заложены мощные и полезные математические идеи. Я хотел бы рассказать о них на простом примере, поэтому давайте начнем с так называемой гистограммы. Например, на такой диаграмме можно распределить количество человек в типичной аудитории американского колледжа в зависимости от их возраста (рис. 4.3).
Чтобы построить такой график, нужно спросить присутствующих, есть ли в аудитории кто-либо в возрасте 16 лет или моложе. Если никто не отзовется, то на графике этим возрастам будут соответствовать нулевые значения. Далее спросим, сколько 17–18-летних. Допустим, наберется 20 человек. Отметим