Название | Большое космическое путешествие |
---|---|
Автор произведения | Нил Деграсс Тайсон |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 2016 |
isbn | 978-5-496-03227-8 |
P = (2πr/v);
следовательно, орбитальный период вычисляется как расстояние, проходимое планетой по орбите (2πr), деленное на скорость (v). Таким образом:
P пропорционально r/v и
P2 пропорционально r2/v2.
Кеплер установил, что P2 пропорционально a3, где a — большая полуось планетной орбиты. В данном случае земная орбита почти круговая, поэтому можно приблизительно взять r = a. В таком случае, подставив r вместо a, находим:
P2 пропорционально r3.
ПосколькуP2 также пропорционально r2/v2,
r2/v2 пропорционально r3.
Разделив на r, получаем:
r/v2 пропорционально r2.
Обратив это выражение, находим, что
v2/r (ускорение) пропорционально 1/r2.
При помощи таких рассуждений, третьего закона Кеплера и элементарной алгебры мы показали, что гравитационное ускорение, сообщаемое Солнцем другому телу, удаленному от него на расстояние r, обратно пропорционально квадрату этого расстояния; это и есть ньютоновский «закон обратных квадратов». Вот как его сформулировал сам Ньютон:
…в это время я был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо после. Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояний от центров, вокруг коих они вращаются.
Такие представления о гравитации Ньютон также применил к Земле и Луне. Вспомните знаменитое упавшее яблоко, вдохновившее Ньютона. Оно расположено на расстоянии одного земного радиуса от центра Земли и падает на Землю с ускорением 9,8 м/с2. Луна расположена на расстоянии 60 земных радиусов от центра Земли. Если сила тяготения Земли убывает в пропорции 1/r2 (как и у Солнца), то на лунной орбите земное притяжение должно давать ускорение в (60)2 раз меньше тех 9,8 м/с2, которым равно ускорение свободного падения на поверхности Земли, то есть около 0,00272 метра в секунду за секунду.
Точно как и в случае с вращением Земли вокруг Солнца, можно рассчитать ускорение Луны, вращающейся вокруг Земли, взяв период вращения (27,3 дня) и радиус лунной орбиты (384 000 километров). Подставив эти числа в формулу v2/r, получаем ускорение 0,00272 метра в секунду за секунду. Эврика! Как красиво все согласуется с моделью, где расчет велся от яблока. По словам самого Ньютона, два этих результата показались ему «весьма близко совпадающими». Одна и та же сила притягивает к Земле и яблоко, и Луну, причем траектория Луны искривляется и становится не прямолинейной, а круговой, что позволяет ей удерживаться на приблизительно концентрической околоземной орбите. Сила земного притяжения, под действием которой падает яблоко, распространяется и на орбиту Луны. Ньютон совершил это открытие, когда жил в доме бабушки, – Кембриджский университет