Название | Вычислительное мышление: Метод решения сложных задач |
---|---|
Автор произведения | Пол Керзон |
Жанр | Самосовершенствование |
Серия | |
Издательство | Самосовершенствование |
Год выпуска | 2017 |
isbn | 978-5-9614-5020-0 |
Можно прибегнуть к аналитическому мышлению. В этом случае необходимо сделать простые вычисления. Например, давайте учитывать не время, а сделанную работу. Если подсчитать, сколько букв алфавита произносит помощница, то мы всегда определим потраченное время. Просто надо знать, сколько времени уходит на произнесение одной буквы, и умножить это время на количество букв. Мы только что произвели действие, которое называется абстрагированием. Это еще один элемент вычислительного мышления, который применяется, чтобы упростить задачи и облегчить написание программ. Абстрагирование – просто длинное слово, которое подразумевает, что некоторые подробности скрывают или игнорируют. Мы проигнорировали такую деталь, как точное время, потраченное на всю книгу, и вместо этого подсчитали произнесенные буквы. «Число произнесенных букв» – это абстракция реально потраченного времени. Такой принцип очень часто используется в вычислительных процессах, чтобы упростить их работу.
Как же нам выяснить, сколько букв надо произнести? Для этого нужно задать несколько вопросов. Самый простой звучит так: сколько это будет в лучшем случае? Каково минимальное количество букв, которое должна произнести помощница, чтобы получилась книга? Рассмотрим и худший случай. Если не повезет, то насколько? Наконец, рассмотрим средний вариант и таким образом получим реалистичную оценку необходимой работы. Давайте чисто теоретически представим, что нам нужны только буквы алфавита, без цифр и знаков пунктуации. И проанализируем наш простой алгоритм, в соответствии с которым помощница говорит: «A, B, C…»
В лучшем случае вся книга будет состоять только из «А»: «АААА…» (возможно, выражая боль автора). Чтобы общаться при помощи одной буквы «А», достаточно сказать «А» один раз (ответить на один вопрос), и ответ будет получен. Здесь мы снова используем абстракцию – сначала анализируем, что будет, если посчитать только одну букву, и игнорируем всю книгу – по крайней мере для начала. Умножьте наш ответ для одной буквы на количество букв в книге и получите упомянутый лучший случай.
В худшем случае (для латинского алфавита), при котором кто-нибудь, например, все время жужжит («ZZZZ…»), потребуется 26 вопросов для каждой буквы. Итак, мы определили границы, в которых будет происходить передача любой информации. У нас никогда не получится лучше, чем при варианте с одной буквой, и хуже, чем со всеми 26.
Оценка будет точнее, если учесть среднее количество вопросов на каждую букву, то есть средний случай. Сделать это не так трудно. В длинном сообщении на каждую «А» где-нибудь еще придется «Z», на каждую «B» найдется «Y» и так далее. Это значит, что в среднем во всей книге на каждую продиктованную букву надо будет задать 13 вопросов. Умножьте число букв в книге