Это сладкое слово Свобода!. Евгений Анатольевич Краев

Читать онлайн.
Название Это сладкое слово Свобода!
Автор произведения Евгений Анатольевич Краев
Жанр Философия
Серия
Издательство Философия
Год выпуска 2017
isbn



Скачать книгу

вается пустым или лживым.

      С одной стороны, зовет, а с другой – не говорит куда и зачем.

      Потому и служить может лозунгом для практически любой идеи.

      От коммунизма до фашизма, от анархии до затворничества.

      Потому и любят его и либералы, и демократы, и религиозные фанатики…

      Отсюда и определений у этого слова не счесть.

      Можно, например, открыть Википедию или какой-нибудь толковый словарь и «познать» «подлинное» содержание и смысл обыкновенного, по сути, слова.

      Жаль только, что выхолощенное многословием значение его так и останется презумпцией лозунгов.

      А ведь истина, как всегда, где-то рядом.

      Надо только поразмышлять, разобраться и понять…

      А не следовать малосодержательным определениям.

      Кстати, это простое правило следовало бы применять не только к нашему «сладкому» слову, но и вообще к окружающей действительности.

      Однако, «простое правило» на деле обнаруживается не таким уж и простым.

      Причины этого тоже, конечно же, лежат в плоскости естественных явлений, но не в рамках этого разговора.

      Единственно, что нелишне следует заметить, это некоторое отклонение нынешней науки от правил развития самой науки и неуклонное следование ее столповой дорогой формализма.

      Собственно, это и не совсем плохо. Потому что это и есть – неотъемлемый и необходимый способ познания. Однако одного формализма откровенно недостаточно!

      Впрочем, добавив некоторое любопытство и системность, вполне возможно повышать уровень упорядочения мира.

      И в нашем маленьком эссе мы пойдем именно этим путем.

      То есть соединим правила самой формализованной науки – математики и основные требования философии к решению наших текущих задач.

      Истина

      Если подойти к этому понятию с позиций философии, то есть попробовать дать ему удобоваримое определение, то мы опять получим множество дефиниций, подчас противоположных по смыслу. Что, к сожалению, не добавит нам никой Истины.

      А вот в математике, например, эта проблема решается на раз – истиной здесь будет уравнение типа А=А

      И как бы вам сейчас не стало смешно, но в математике это истина!

      То есть выполнение равенства уравнения является истиной, а невыполнение – ложью.

      Или по-другому – сама формула «Истина = Истина» является прообразом любой прочей Истины.

      И еще раз – если выполняется этот критерий (равенство условий левой и правой стороны уравнения), то это и есть истина.

      Например, можно вывести такие истины:

      2 + 2 = 4

      А + В = С (при А=1, В=3, С=4)

      Истина = выражение, соответствующее истине (при определенных (установленных) условиях).

      Истина = (А + В = С (при А=1, В=3, С=4))

      То есть при реализации условий, установленных в одной из частей уравнения, другая часть становится истиной. Или искомой сутью.

      Конечно, и это, и вообще все сказанное, и даже все-все в Мире совершено условно и относительно.

      Ведь та же истина А=А или 2=2 это всего лишь условие некой задачи. Удовлетворительное для ее решения. На самом деле это «2» в левой и «2» в правой части уравнения. Понятно, что это разные двойки. И лишь их достаточное равенство для решения задачи устанавливает истинность уравнения.

      Например, уже два! яблока не равны двум! грушам. Да и яблоки зеленые не равны яблокам красным. И так далее, и тому подобное.

      То есть истина проявляется тогда, когда решается некая задача. И наоборот – истина помогает решить задачу правильно.

      А «правильно» – это так, как это потребно нам. Удовлетворительно.

      То есть истинность сказанного подтверждается удовлетворенностью читателя.

      Если все понятно и сомнений нет (левая часть равна правой – уравнение подтверждено) – то все сказанное истина.

      А если есть возражения и истина не такова, то должны быть представлены и аргументы, дополняющие формулу и выравнивающие уравнение.

      И еще – здесь очень важно отметить – для решения глубоких (основополагающих) философских задач необходимо абстрагироваться от многих частностей. И выбирать в качестве аргументов идеальные (безусловные) составляющие. При этом, понятно, что и решение будет идеальным. То есть всего лишь эталонным. На практике таких решений не бывает никогда. Поэтому надо понимать и учитывать, что фактическое положение дел и отклонения от идеала неизбежны и даже, возможно, очень далеки от него. Это, однако не отменяет сути вопроса, а лишь передает уровень отхода от него. То есть показывает, как раз то, что есть на самом деле, позволяя принимать соответствующие решения.

      Впрочем, это касается лишь логических построений. Однако существуют и иные методы установления истины. Они нелогичны, не аргументированы и неопределённы. Но, тем не менее, достаточны, порой, для установления истины. Это безальтернативные