Название | История науки и техники. Энергомашиностроение |
---|---|
Автор произведения | Анатолий Шейпак |
Жанр | Учебная литература |
Серия | |
Издательство | Учебная литература |
Год выпуска | 2017 |
isbn | 978-5-906879-26-4 |
Рис. 3.19. Насос Гвинна
Напор одноступенчатых центробежных насосов, серийно выпускаемых промышленностью, достигает 120 м, подача – 30 м3/с. Серийно выпускаемые многоступенчатые насосы развивают напор до 2000 м при подаче до 0,1 м3/с. КПД в зависимости от конструктивного исполнения меняется в широких пределах: от 0,85 до 0,9 у крупных одноступенчатых насосов и 0,4–0,45 у высоконапорных многоступенчатых. Параметры центробежных насосов специального изготовления, как одноступенчатых, так и многоступенчатых, могут быть значительно выше.
Самый мощный насос в мире функционирует в американском штате Виргиния. Наружный диаметр его рабочего колеса составляет 6,5 метров, частота вращения – 257 оборотов в минуту, напор – 393 метра, мощность – 457 000 000 ватт. Самый маленький центробежный насос, известный автору, имел наружный диаметр 8 миллиметров.
Рис. 3.20. Многоступенчатый питательный насос
Один из исследователей истории создания насосов, Авраам Энжеда (Abraham Engeda), отметил, что «насосы имеют длинную хронологию, но теория далека от практики». В наибольшей степени это относится к лопастным насосам»: центробежным и осевым. Создание эффективных энергетических машин этого типа невозможно только путем инженерной интуиции и накопления опытных данных. Потребовалось создание продуктивной теории, основанной на математических моделях различной степени сложности.
Пальму первенства традиционно отдают Леонардо да Винчи, однако его достижения в этой области стали широко известны уже после создания более полных теоретических исследований и достаточно эффективных машин. Некоторые приписывают приоритет Иоганну Иордану (Johan Iordan), человеку менее известному, который в 1680 году рассматривал принцип действия радиальных лопастных машин.
В 1754 году проблемами, связанными с лопастными насосами и турбинами, называемыми также турбомашинами, заинтересовался великий математик Леонард Эйлер (Leonahrd Euler). На основе общих законов механики он получил основное уравнение теории турбомашин, которое дало возможность создания математических моделей этих машин.
В этом уравнении M момент взаимодействия потока жидкости и рабочего колеса, V2u и V1u окружные составляющие жидкости на выходном r2u и входном r1u радиусах рабочего колеса.
Публикация статьи Эйлера способствовала разработкам в первую очередь гидравлических турбин, но ее содержание было недостаточным для детального проектирования проточной части машин. Потребовалось множество экспериментальных исследований и математических моделей, например схеме бесконечного числа тонких лопаток, чтобы можно было провести расчет реальных