Название | Обыграй дилера: Победная стратегия игры в блэкджек |
---|---|
Автор произведения | Эдвард Торп |
Жанр | Учебная литература |
Серия | |
Издательство | Учебная литература |
Год выпуска | 1966 |
isbn | 978-5-389-13943-5 |
На практике оказывается, что такие ограничения максимальных ставок позволяют казино выигрывать тот же процент оборота, которые они выигрывают обычно, даже если игрок использует систему удвоения. Таким образом, система удвоения не дает игроку никакого преимущества. Другие, более сложные системы игры, по-видимому, обладают тем же недостатком. Поэтому неудивительно, что впоследствии было доказано, исходя из математической теории вероятностей, что для большинства распространенных азартных игр невозможно разработать систему ставок, которая хоть как-нибудь изменяла бы долговременное преимущество казино.
В число игр, для которых это утверждение доказано, входят игры, которые математики относят к категории «процессов с независимыми испытаниями» (к ним относятся, например, крэпс и рулетка[28]). Этот термин означает, что результат каждой игры не испытывает влияния предыдущих результатов и сам не влияет на будущие результаты. Представим себе, например, что мы тасуем карточную колоду и вытягиваем из нее одну карту – пусть это будет четверка пик. Теперь вернем карту в колоду и снова тщательно перетасуем ее. Если мы еще раз вытянем карту, вероятность того, что это снова будет четверка пик, не больше и не меньше, чем вероятность вытянуть любую из оставшейся 51 карты. Как формулирует это обстоятельство расхожая поговорка, «у карт нет памяти».
В отличие от предыдущего случая в блэкджеке, в который играют в казино, у карт есть память! То, что происходит в одном туре игры, может повлиять как на следующий, так и на дальнейшие ее туры. Поэтому блэкджек можно исключить из области применимости математических рассуждений, которые исключают существование выгодных игровых систем для игр с независимыми опытами.
Предположим, например, что
27
В русском языке применительно к названию этой игровой системы также используется английское произношение, «мартингейл». Однако, хотя точная этимология этого слова неизвестна, оно происходит из французского языка, и сохранение французского чтения представляется более логичным. Интересно отметить, что в других значениях – в качестве названий вида стохастических процессов в теории вероятностей и элемента конской упряжи – по-русски используется только вариант «мартингал». (
28
В предположении «идеальных» игральных костей и «идеальной» рулетки. Интересный отчет о попытках переиграть смещенную рулетку можно найти в работе Вильсона [80].