Название | Апология математики (сборник статей) |
---|---|
Автор произведения | В. А. Успенский |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 978-5-9614-4950-1 |
Тем не менее повсеместное проникновение математики некоторым кажется загадочным, а некоторым – подозрительным. В самом деле, не вызывает сомнений право на всеобщее признание, скажем, физики или химии: физика открывает нам новые мощные источники энергии и новые средства быстрой связи, химия создаёт искусственные ткани, а сейчас покушается и на создание искусственной пищи. (Сказанное не претендует, разумеется, на какое-либо определение и тем более ограничение роли физики и химии.) Неудивительно, что эти науки, помогающие человеку в его извечных поисках еды, одежды, источников силы и способов связи, прочно вошли в нашу жизнь, заняв в ней почётное место. А ведь математика проникла даже в науки, традиционно считающиеся гуманитарными. И хотя, например, в языкознании пользуются физическими приборами для исследования устной речи, никто не говорит о «физической лингвистике».
Так что же даёт людям математика, теоретическая наука, которая не открывает ни новых веществ, как химия, ни новых средств перемещения предметов или передачи сигналов, как физика? И почему появление в какой-либо отрасли науки математических методов исследования или хотя бы просто математического осмысления соответствующей системы понятий и фактов всегда означает достижение этой отраслью определённого уровня зрелости и начало нового этапа в её дальнейшем развитии? Наиболее распространённый в недавнем прошлом ответ состоял в том, что математика умеет хорошо вычислять и тем самым позволяет находить в нужных случаях требуемые цифровые данные. Однако при всей важности вычислительного аспекта математики – и особенно в последние годы, ознаменованные столь бурным развитием вычислительной техники, – этот аспект оказывается и второстепенным, и вторичным при попытке объяснить причины математизации современного мира.
Любая попытка дать краткое объяснение этих причин неизбежно приведёт к неполной и неточной формулировке. Если всё же заранее согласиться на это, то можно сказать следующее: математика предлагает весьма общие и достаточно чёткие модели для изучения окружающей действительности, в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками; действительность же так усложнилась (как за счёт познания новых её сторон, так и за счёт создания человеком новых её форм), что без упрощающих, огрубляющих, формализующих, охватывающих лишь одну сторону явления моделей ныне не обойтись. Появление таких моделей в какой-либо отрасли науки свидетельствует о том, что система понятий этой отрасли уточнилась настолько, что может быть подвергнута строгому и абстрактному, т. е. математическому, изучению. Такое изучение, в свою очередь, играет решающую роль в дальнейшем уточнении понятий, а следовательно, и в успешном их применении. Математическая модель нередко задаётся в виде особого «языка», предназначенного для описания тех или иных явлений. Именно так, в виде языка, возникли