Апология математики (сборник статей). В. А. Успенский

Читать онлайн.
Название Апология математики (сборник статей)
Автор произведения В. А. Успенский
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 978-5-9614-4950-1



Скачать книгу

имеют и парадоксы, которые окрестили логическими, хотя правильнее было бы называть их лингвистическими. Так мы и будем их называть. Как только что отмечалось, математические парадоксы возникают при попытке оперировать с математическими сущностями путём использования общеупотребительной лексики. Лингвистические парадоксы возникают, напротив, при попытке оперировать с общеупотребительными словами так, как если бы они выражали точные математические понятия. Общеупотребительные слова, как правило, имеют расплывчатый смысл, и попытка придания им точного смысла как раз и приводит к парадоксам. Рассмотрим для ясности три известных лингвистических парадокса.

      Парадокс кучи. Это один из самых известных и древних парадоксов. Ясно, что если из кучи песка удалить одну песчинку, то оставшееся всё ещё будет кучей. Но ведь, повторив данную операцию достаточное количество раз, мы дойдём до одной-единственной песчинки, каковая кучу не образует. Где же граница между кучей и не кучей? Ответ очевиден: слово «куча» имеет расплывчатый смысл, и потому искать точные границы этого смысла бесполезно.

      Парадокс наименьшего числа. Возьмём «наименьшее натуральное число, которое не допускает определения посредством фразы, содержащей менее ста слов». С одной стороны, это число не допускает определения посредством менее ста слов. С другой стороны, взятая в кавычки фраза является его определением, причём таким, которое содержит менее ста слов. Разгадка в том, что мы обращаемся с выражением «определять натуральное число» так, как если бы оно имело точный смысл, какового в действительности оно не имеет. Достаточно задаться вопросом, какие слова можно использовать в определении. Можно ли, например, употреблять названия редких растений, известные лишь узкому кругу ботаников, или специальные математические термины, или собственные имена людей (притом что каждое такое имя принадлежит, как правило, нескольким людям)? Наш парадокс как раз и показывает, что обсуждаемому выражению точный смысл придать невозможно.

      Парадокс гетерологичности. Назовём прилагательное гомологическим, если оно обладает тем свойством, которое это прилагательное выражает; в противном случае назовём его гетерологическим. Примеры: прилагательное «многосложный» само многосложно и потому является гомологическим; прилагательное «односложный» не односложно и потому является гетерологическим. Гомологично или гетерологично прилагательное «гетерологический»? Если оно гомологично, то, значит, обладает свойством, которое выражает, а свойство это – 'гетерологичность'; значит, рассматриваемое прилагательное гетерологично. Если же оно гетерологично, то, обладая выражаемым им свойством гетерологичности, должно квалифицироваться как гомологическое. Всё дело в том, что слова «гомологический» и «гетерологический» не обладают точным смыслом, в презумпции какового происходит рассуждение. Толкование этих слов опирается на толкование словосочетания «свойство, выражаемое