Essays on Education and Kindred Subjects. Spencer Herbert

Читать онлайн.
Название Essays on Education and Kindred Subjects
Автор произведения Spencer Herbert
Жанр Очерки
Серия
Издательство Очерки
Год выпуска 0
isbn



Скачать книгу

or printed – is it not wholly woven, nay, perhaps even sewed, by machinery? And the volume you are reading – are not its leaves fabricated by one machine and covered with these words by another? Add to which that for the means of distribution over both land and sea, we are similarly indebted. And then observe that according as knowledge of mechanics is well or ill applied to these ends, comes success or failure. The engineer who miscalculates the strength of materials, builds a bridge that breaks down. The manufacturer who uses a bad machine cannot compete with another whose machine wastes less in friction and inertia. The ship-builder adhering to the old model is out-sailed by one who builds on the mechanically-justified wave-line principle. And as the ability of a nation to hold its own against other nations, depends on the skilled activity of its units, we see that on mechanical knowledge may turn the national fate.

      On ascending from the divisions of Abstract-Concrete science dealing with molar forces, to those divisions of it which deal with molecular forces, we come to another vast series of applications. To this group of sciences joined with the preceding groups we owe the steam-engine, which does the work of millions of labourers. That section of physics which formulates the laws of heat, has taught us how to economise fuel in various industries; how to increase the produce of smelting furnaces by substituting the hot for the cold blast; how to ventilate mines; how to prevent explosions by using the safety-lamp; and, through the thermometer, how to regulate innumerable processes. That section which has the phenomena of light for its subject, gives eyes to the old and the myopic; aids through the microscope in detecting diseases and adulterations; and, by improved lighthouses, prevents shipwrecks. Researches in electricity and magnetism have saved innumerable lives and incalculable property through the compass; have subserved many arts by the electrotype; and now, in the telegraph, have supplied us with an agency by which for the future, mercantile transactions will be regulated and political intercourse carried on. While in the details of in-door life, from the improved kitchen-range up to the stereoscope on the drawing-room table, the applications of advanced physics underlie our comforts and gratifications.

      Still more numerous are the applications of Chemistry. The bleacher, the dyer, the calico-printer, are severally occupied in processes that are well or ill done according as they do or do not conform to chemical laws. Smelting of copper, tin, zinc, lead, silver, iron, must be guided by chemistry. Sugar-refining, gas-making, soap-boiling, gunpowder-manufacture, are operations all partly chemical; as are likewise those which produce glass and porcelain. Whether the distiller's wort stops at the alcoholic fermentation or passes into the acetous, is a chemical question on which hangs his profit or loss; and the brewer, if his business is extensive, finds it pay to keep a chemist on his premises. Indeed, there is now scarcely any manufacture over some part of which chemistry does not preside. Nay, in these times even agriculture, to be profitably carried on, must have like guidance. The analysis of manures and soils; the disclosure of their respective adaptations; the use of gypsum or other substance for fixing ammonia; the utilisation of coprolites; the production of artificial manures – all these are boons of chemistry which it behoves the farmer to acquaint himself with. Be it in the lucifer match, or in disinfected sewage, or in photographs – in bread made without fermentation, or perfumes extracted from refuse, we may perceive that chemistry affects all our industries; and that, therefore, knowledge of it concerns every one who is directly or indirectly connected with our industries.

      Of the Concrete sciences, we come first to Astronomy. Out of this has grown that art of navigation which has made possible the enormous foreign commerce that supports a large part of our population, while supplying us with many necessaries and most of our luxuries.

      Geology, again, is a science knowledge of which greatly aids industrial success. Now that iron ores are so large a source of wealth; now that the duration of our coal-supply has become a question of great interest; now that we have a College of Mines and a Geological Survey; it is scarcely needful to enlarge on the truth that the study of the Earth's crust is important to our material welfare.

      And then the science of life – Biology: does not this, too, bear fundamentally on these processes of indirect self-preservation? With what we ordinarily call manufactures, it has, indeed, little connection; but with the all-essential manufacture – that of food – it is inseparably connected. As agriculture must conform its methods to the phenomena of vegetal and animal life, it follows that the science of these phenomena is the rational basis of agriculture. Various biological truths have indeed been empirically established and acted upon by farmers, while yet there has been no conception of them as science; such as that particular manures are suited to particular plants; that crops of certain kinds unfit the soil for other crops; that horses cannot do good work on poor food; that such and such diseases of cattle and sheep are caused by such and such conditions. These, and the every-day knowledge which the agriculturist gains by experience respecting the management of plants and animals, constitute his stock of biological facts; on the largeness of which greatly depends his success. And as these biological facts, scanty, indefinite, rudimentary, though they are, aid him so essentially; judge what must be the value to him of such facts when they become positive, definite, and exhaustive. Indeed, even now we may see the benefits that rational biology is conferring on him. The truth that the production of animal heat implies waste of substance, and that, therefore, preventing loss of heat prevents the need for extra food – a purely theoretical conclusion – now guides the fattening of cattle: it is found that by keeping cattle warm, fodder is saved. Similarly with respect to variety of food. The experiments of physiologists have shown that not only is change of diet beneficial, but that digestion is facilitated by a mixture of ingredients in each meal. The discovery that a disorder known as "the staggers," of which many thousands of sheep have died annually, is caused by an entozoon which presses on the brain, and that if the creature is extracted through the softened place in the skull which marks its position, the sheep usually recovers, is another debt which agriculture owes to biology.

      Yet one more science have we to note as bearing directly on industrial success – the Science of Society. Men who daily look at the state of the money-market glance over prices current; discuss the probable crops of corn, cotton, sugar, wool, silk; weigh the chances of war; and from these data decide on their mercantile operations; are students of social science: empirical and blundering students it may be; but still, students who gain the prizes or are plucked of their profits, according as they do or do not reach the right conclusion. Not only the manufacturer and the merchant must guide their transactions by calculations of supply and demand, based on numerous facts, and tacitly recognising sundry general principles of social action; but even the retailer must do the like: his prosperity very greatly depending upon the correctness of his judgments respecting the future wholesale prices and the future rates of consumption. Manifestly, whoever takes part in the entangled commercial activities of a community, is vitally interested in understanding the laws according to which those activities vary.

      Thus, to all such as are occupied in the production, exchange, or distribution of commodities, acquaintance with Science in some of its departments, is of fundamental importance. Each man who is immediately or remotely implicated in any form of industry (and few are not) has in some way to deal with the mathematical, physical, and chemical properties of things; perhaps, also, has a direct interest in biology; and certainly has in sociology. Whether he does or does not succeed well in that indirect self-preservation which we call getting a good livelihood, depends in a great degree on his knowledge of one or more of these sciences: not, it may be, a rational knowledge; but still a knowledge, though empirical. For what we call learning a business, really implies learning the science involved in it; though not perhaps under the name of science. And hence a grounding in science is of great importance, both because it prepares for all this, and because rational knowledge has an immense superiority over empirical knowledge. Moreover, not only is scientific culture requisite for each, that he may understand the how and the why of the things and processes with which he is concerned as maker or distributor; but it is often of much moment that he should understand the how and the why of various other things and processes. In this age of joint-stock undertakings, nearly every man above the labourer is interested as capitalist in some other occupation than his own; and, as thus interested, his profit or loss often depends on his knowledge of the sciences bearing on this other occupation. Here is a mine, in the sinking of which many shareholders ruined themselves, from not knowing that a certain fossil belonged to the old red sandstone,