Как было на самом деле. Каждая история желает быть рассказанной. Анатолий Фоменко

Читать онлайн.
Название Как было на самом деле. Каждая история желает быть рассказанной
Автор произведения Анатолий Фоменко
Жанр Биографии и Мемуары
Серия
Издательство Биографии и Мемуары
Год выпуска 2017
isbn 978-5-17-096292-1



Скачать книгу

разделами топологии. Для этой обобщенной постановки автором получена теорема существования. Разработанные диссертантом методы и их конструкции позволяют эффективно находить решение задачи минимизации в важном классе конкретных примеров и получать информацию о дифференциально-геометрических и топологических свойствах изучаемых объектов. Рассматриваемая диссертация удовлетворяет всем требованиям, предъявляемым к диссертациям».

      Далее выступил академик П. С. Александров. В частности он сказал: «Мне кажется, что имеется довольно общеизвестная истина, что основное бедствие, которое испытывает математика и которое влияет на большинство других наук, заключается в чрезвычайном количественном, а не качественном росте разобщенных работ. И в общем это «грандиозное строительство» несколько напоминает строительство Вавилонской башни, результатом которого было то, что строители заговорили на разных языках и потеряли способность понимать друг друга, на чем это строительство, как это написано в Библии, и закончилось. Боюсь, что нечто подобное происходит сейчас в математике. Чтобы избежать этого, необходимо усилия наших исследователей направить на решение таких проблем, чтобы поводом для исследования было не желание написать какую-то работу, защитить ее и добиться того, чтобы его процитировали коллеги, а на действительно честную потребность в решении чего-то существенного, обогащающего науку…

      Хочу сказать, что рассматриваемая работа (я даже не хочу называть ее диссертацией потому, что один из оппонентов уже сказал, что эта работа есть совокупность двух докторских диссертаций), – демонстрирует здесь по существу сочетание чистого интереса к науке и прекрасного вкуса в этой научной честности. Широта познания, а также интересы диссертанта сыграли весьма существенную роль в полученных результатах, потому что из того, что здесь говорилось, можно усмотреть, что тут происходит чрезвычайно увлекательная игра между геометрическими и алгебраическими, по существу, теоретико-множественными понятиями. И я думаю, что без такого владения всеми основными направлениями в современной топологии, в современной геометрии и направлениями современной алгебры, в направлении классической формы, и в направлении теоретико-множественном, – не владей автор работы всеми этими вещами, едва ли он мог бы найти пути, которые ведут к решению поставленной задачи, и едва ли он мог бы поставить эту задачу так, как ее нужно было поставить и как он ее поставил. И недаром тут было сказано, что эта теория обращена ко всей математике. Так вот, эту поглощающую все работу, автор проделал в полной мере и с большим увлечением нам доложил ее здесь…

      И все мы прекрасно понимаем, что работа диссертанта – это большой шаг вперед, сделанный в науке математике, и что автор ее не только достоин степени доктора, но он достоин еще гораздо более высокого звания, звания настоящего математика, настоящего ученого и настоящего представителя своей науки. Вот то впечатление,