Название | Занимательная астрономия |
---|---|
Автор произведения | Яков Перельман |
Жанр | Прочая образовательная литература |
Серия | |
Издательство | Прочая образовательная литература |
Год выпуска | 0 |
isbn |
Рис. 16. Как двигался бы земной шар вокруг Солнца, если бы ось вращения Земли лежала в плоскости ее орбиты
В средних широтах дни будут быстро нарастать от начала весны, а затем в течение некоторого времени будет длиться многосуточный день. Этот долгий день наступит через столько примерно суток, на сколько градусов данное место отстоит от полюса, и будет длиться приблизительно столько суток, сколько градусов содержит удвоенная широта места.
Для Петербурга, например, многосуточный день наступил бы через 30 дней после 21 марта и длился бы 120 суток. За тридцать суток до 23 сентября снова явятся ночи. Зимой будет происходить обратное: взамен непрерывного многосуточного дня столько же времени будет сплошная ночь. И только на экваторе день всегда равнялся бы ночи.
Приблизительно в таком положении по отношению к плоскости орбиты находится, как было упомянуто, ось Урана: наклонение оси этой планеты к плоскости ее движения вокруг Солнца равно всего 8°. Уран, можно сказать, обращается вокруг Солнца в «лежачем» положении.
После этих трех «если бы» читателю, вероятно, стала яснее тесная связь между климатическими условиями и наклоном земной оси. Не случайно слово «климат» значит по-гречески «наклон».
Обратимся теперь к другой стороне движения нашей планеты – к форме ее орбиты. Как и все планеты, Земля подчиняется первому закону Кеплера: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Каков же тот эллипс, по которому движется земной шар? Сильно ли отличается он от круга?
В учебниках и книгах по начальной астрономии нередко изображают земную орбиту в перспективе, в форме довольно сильно растянутого эллипса. Такой зрительный образ, неправильно понятый, запечатлевается у многих на всю жизнь: они остаются в убеждении, что орбита Земли – заметно растянутый эллипс. Это вовсе не так: земная орбита отличается от круга настолько мало, что ее нельзя даже изобразить на бумаге иначе, как в форме круга. При поперечнике орбиты на чертеже в целый метр отступление фигуры от круга было бы меньше толщины той линии, которой она изображена. Такого эллипса не отличил бы от круга даже изощренный глаз художника.
Познакомимся немного с геометрией эллипса. В эллипсе (рис. 17) AB – его «большая ось», CD – «малая ось». В каждом эллипсе, кроме «центра» O, есть еще две замечательные точки – «фокусы», лежащие на большой оси симметрично по обеим сторонам центра. Разыскивают фокусы так (рис. 18): раздвигают ножки циркуля на расстояние большой полуоси OB и, установив острие в конце C малой оси, описывают дугу, пересекающую большую ось. Точки пересечения F и F1 – фокусы эллипса. Расстояния OF и OF1 (они равны) обозначаются обыкновенно буквой c, а оси, большая и малая, через 2а и 2b. Расстояние с, отнесенное к длине а большой полуоси, т. е. дробь с/а, служит мерой растянутости эллипса и называется «эксцентриситетом». Чем больше эллипс отличается от круга, тем эксцентриситет его больше.