Мозгоускорители. Как научиться эффективно мыслить, используя приемы из разных наук. Ричард Нисбетт

Читать онлайн.



Скачать книгу

Adam, and Daniel M. Oppenheimer. "Predicting Stock Price Fluctuations Using Processing Fluency." Proceedings of the National Academy of Science 103 (2006): 9369–72.

      24

      Danziger, Shai, J. Levav, and L. Avnaim-Pesso. "Extraneous Factors in Judicial Decisions. "Proceedings of the National Academy of Science 108 (2011): 68, 89–92.

      25

      Williams, Lawrence E., and John A. Bargh. "Experiencing Physical Warmth Infl uences Personal Warmth." Science 322 (2008): 606–607.

      26

      Dutton, Donald G., and Arthur P. Aron. "Some Evidence for Heightened Sexual Attraction Under Conditions of High Anxiety." Journal of Personality and Social Psychology 30 (1974): 510–51.

      27

      Levin, Irwin P., and Gary J. Gaeth. "Framing of Attribute Information Before and After Consuming the Product." Journal of Consumer Research 15 (1988): 374–78.

      28

      McNeil, B. J., S. G. Pauker, H. C. Sox, and A. Tversky. "On the Elicitation of Preferences for Alternative Therapies." New England Journal of Medicine 306 (1982): 943–55.

      29

      Kahneman, Daniel. Thinking, Fast and Slow. New York: Farrar, Straus and Giroux, 2011.

      30

      Tversky, Amos, and Daniel Kahneman. "Extensional Versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment." Psychological Review 90 (1983): 293–315.

      31

      Jennings, Amabile, and Ross, "Informal Covariation Assessment: Data-Based Vs. Theory-Based Judgments," in Tversky and Kahneman, Judgment Under Uncertainty.

      32

      Gilovich, Thomas, Robert Vallone, and Amos Tversky. "The Hot Hand in Basketball: On the Misperception of Random Sequences." Cognitive Personality 17 (1985): 295–314.

iVBORw0KGgoAAAANSUhEUgAAAXIAAAD+CAYAAAAnIY4eAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAyFpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuNS1jMDE0IDc5LjE1MTQ4MSwgMjAxMy8wMy8xMy0xMjowOToxNSAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtcDpDcmVhdG9yVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENDIChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDo3N0YxNTJENjNDNkExMUU2QkY4QkNEODE5MjNCQUJDQyIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDo3N0YxNTJENzNDNkExMUU2QkY4QkNEODE5MjNCQUJDQyI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOjc3RjE1MkQ0M0M2QTExRTZCRjhCQ0Q4MTkyM0JBQkNDIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjc3RjE1MkQ1M0M2QTExRTZCRjhCQ0Q4MTkyM0JBQkNDIi8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+6mHxowAAam1JREFUeNrsXQd4HNW1nlWvVu+WLFnNRZLlgqsMtrExxWCaIRBI6AkJgQCPBJKQQEIeISEBXiAkQCD0Xm0IYAy4YBtXybItyeq99173nX99rj0eVoUq7e75v+9+uzs7c+fW/5TbTGazWRMIBAKB7cJJikAgEAhsGy533XWXTSYclsQNN9yghYSEjGs6tm7deuvLL798vaenZ3dfX5/m5+enubm5acHBwZqXl5fW09Ojtba2ar6+vlpiYmIR/bdxYGBAc3d315ydnTUnJydLcHFxOZYvfKf4NFdXV21oaMjyP66bTKaewcFB+unkRt/x23Idwd/f/12Ku4Xi7KPne9T/OgxRMHEY0l3HbzMLdf11MdUEDofnn39eO3TokKUPf9vo7u7WVq1apa1cufLrE3lJSYlNkjhCf3//uKajo6MjdvPmzXddcMEFj0RHRz/PZGshXpAwiBpEjHTiGhH99PLy8gt6e3s1kDmRsiWAuBFwL36rOPDZ2dlpiQtxlJWVZdBr28PCwrIUweN+CBASFIFE5t0eHh4zKR3zET+ECKVRq6mpQQgIDAzs8vb27qU4g6gRuSBOeq6b3uNMgqedngusr6834X0+Pj6lJCRfqaqquo6ESvHcuXP/OHPmzE8NZC8Q2BVqa2u1oqIijfrRt/4u9O3m5uZvRiP/LiTPt0XkBo3zOweR3MK4uLh9y5cvv32Mj2STVv7K13ilF4U+CgMj3ONNBB4BogeZI4DoqYGumzRp0l6yBIrq6uoup3tCcA9dO0DCICAoKOhjEhTfp/ZgaRNQ+ymuZLIqPsjJyTmpsrLyASLyRXStS7q7wG5dFKRQof1/F7wIRQrK3jeSbqm6rw4ivmVEiB3f4SvHQqKdpE0UGC+Gh4ffq75HRkb+ztqDkydP/nzx4sVfuL5nz57rs7KyFgqJCwQTEzLY+TWwY8eO5f7+/m32ns+Kigon0shF6AsEQuT2ha6urjgyjUIWLFjwsL3ntbe3d42Xl1ef1LpAIERuVzh48OByDw+PhvDw8EP2ntfMzMyFwcHBA1LrAoEQuV1hy5YtP/H29q52cXFpsed8NjY2zsvNzfV0c3MTjVwgmKAQv+dXhI+Pz8DcuXNfs/d8lpaWnmo2m90pDEqtCwSikdsNOjs7U52dnSNSUlI+tPe87t69+7L29vbvZF6tQCAQIv/O0NzcHNXf31/v6emZZ+95bWtr68c8dPqUihcIhMjtSiPvio+Pz3QAEl9aUFAwzcfHBwuHpOIFAiFy+8Hg4OC85OTkV+w9n42NjUH19fWeDQ0Nx/aCEQgEQuT2ANPevXsv7e/vt3sVdd++fT/CXi7Y4Mvb21tqXiAQIrcbLTW1uLg4JDIyMsve81pUVBSEvSCw8RYIXSAQCJHbBbq6usJjY2MbSUPNt/e81tTUWAY6ExMTpeIFAiFy+0FOTs6PIiIiHEE9de/v70fAnHmLe0UgEAiR2zywMMZkMk1KS0u7197z2tzcvKijo2MONr8vLy/HfivSAAQCIXLbBxFb4tDQUEhYWNgb9p7XysrKoba2NhNONuJDLFylBQgEExMyp+xLoLW1NZo0ci9HyCuReDROL8Egp4eHhzkyMrJCWoBAIBq5zePgwYPXeXl5veUIeS0vL78Sy/JxChPleSgqKuppaQECgRC5zaOrq6s/JCTkiL3nk7Rw/5KSkiAcAI2j4uAnJzhLCxAIhMhtGkNDQz5EbJ0xMTEf2HteGxsbZ2RmZqbj0GaQeEBAwLifjyoQCITIvwltPLq1tXU5kXm5vee1s7NziPKrubq6Wggcc8mFyAUCIXKbx549e652dnbOcYS8Hjhw4BrMVpk3b55ljxVZ1SkQCJHbA0x1dXWx0dHR79l7RjG9cu/evRlRUVHalClTYIlY/ORms1lagUAgRG676OvrC8zJyTk9ICCg3d7z2tPTE93Q0JDs6enZT5r4wOTJk7XIyEgNKzwFAoEQuc2io6MjdNKkSfVTp061+6Pd6uvrBzF/3M3N7ePw8PCtcK1AI6ff0hAEAiFy28XOnTsv7+rqinR1de1yAOujp7OzU/P19TVjuiUGOpuamiyrOwUCgRC5zZZRRUVF3MyZM9+l73bvKG5paTkfWnhsbGw9EbkJW9hiL3Jo5QKBQIjcJkGaqB9ppBfPnTv3VUcg8rq6upOwBznl9zFo442NjZYNs2T6oUAgRG7LrgbnWbNmbY6MjHzTEfJbXFzc4+rq2u3v799K5O0cHBxsmX4IchcIBELkNon29vYZERERbxGR9ThAdicfPnx4VWpq6kEvL6/szs5OT7hWsB+5aOQCwcSF7H44CgoLC8/DSkdHyGt/f78rEXcwkbhl9WpPT49lHjkGP4XIBQLRyG22fHbu3HmRh4dHpyNktq6uLhXzxaOioiznkWL3Qwx0+vv7y+pOgUCI3DbR1tY2d2BgwCctLc0htnDdtGnTWkw1zMjIeKy+vv4KskbSQeBOTk7iIxcIhMhtE/n5+ScTsU3y9fWttfe8EmF7l5SUJEP7puBbXl6eUlpa6gkSl8FOgWBiQ3zkIwg5IralcXFxe+m73U+iJusjqra2dgnmkD/zzDMvhISEdAcGBlp85H5+fpqnp6esCBIIRCO3OZhqamrOXLBgAaYd2v2MlcLCwquLi4st2ndWVlZQbm7uZJD4pEmTLIOdvb29opILBELktoXu7u5JFKri4+NfdIT8NjQ0OGOHQ/jIMVslLy/P4hvHbJUjR444P/roo8/T9VhpGQKBELnN4NChQ+d3dHQEenl5tdh7XonAJxUUFCzDfHE1S2XhwoVF2JO8paXFsmHWJ598sri5uTlRWoZAMPEgPvJhUFNTM23OnDnrSSNtsve8tre3e2VnZ8/x9PTsue222+6ZNm3aNldX181nn332lXfeeeffS0tLvS+44IJPIyIiPpaWIRCIRm4zKCwsvDw6OjrfEfI6NDTUR9p2X39//wAReE5dXV3N3r17r+3q6mrCvuSxsbGt55577q/oVplMLhCIRm4zxEaKuKktLi7uOUfIb29v7xRML6yqqvK57rrrXodf3N3d3bI0H37yP/3pT2f4+/vvkJYhEAiR2wxIM/UgEn9n0qRJlY6Q34aGhkv6+vrcExIS+ubMmbO5u7vbMuUQZD5//vwn6PpH0ioEAiFym0JTU9PZkydPDiBttNsR8ltaWtqPpfk333zzH1JSUu6RFiAQ2BbER24FeXl5PwsLC3vZUfJbU1PjThp417Rp0x62gzYsbVogGrlAM5GGGkyaabkjZHZwcND9yJEjlyUmJra4uLjYzFTL+vr6+e+///4tra2taR4eHpVJSUmbdu/efaOnp2cnzlalvDTDv0//Y095bARmcRVh5SrmyuM63WtxIbm6uloWQmFMwMvLy0zfO0wmk1nNo0fAUXf4HRwc/Kabm1srvuv+x6rXY4eOYD7+MLtFygnWAiHy7wKVlZUnE7FNO//88x1FG1+4f//+sDvuuOO3tpRuIvGrNmzYcNFf/vKXePrpRqTqRkTt5u/vv62rq2tld3f3TCZ8C2ljTjwGdEG+JSUl2OnRMj8e8+bVXjL4TsHj888/v6i9vd3yG6SMMQME3BcdHX07CQXLSt+2tjYQv9bc3Ozf0NDgA0GBI/EgGPCcihvvCQkJ0UJDQ7cEBATsxjXcS6Gbnh3AvdhpEuSP//AJgYM0IX7EgziRdsRPwuR1irNJ5UcvOJSAsWgkJhO2lujSHOBkKyFygdGtsi4iIqKIOk+dI+S3trb2VBANEaBNbdVLae4gIuwlciQO9MjBtcmTJ2fz319rvvvatWt/SoTpBFJVxArS5J0g3cCR0NAxrgCQUFheVlaWpjR3BHwHocIa4PRaniXSDVVCgSy/s0hoRDPpWsgb92NrBKXZ4xpIXMUDwURt82ckmHrCwsIsWyjgPkXqCLA0IBg6OjqiKC1lc+fO/e/hw4fnk3BypecGKT4TPbdDpRULwPD+mJiYAvrPm9IXASGF/FG8Q/TZQ/E6UVr66blqEmRvqnci4LvaIRPfVVDpoe/9FL8LfcdssH76NNNni7CNEPm3hqysrDXJycmfUmNrdIT8NjU1dfj4+AwRIdrU9MLe3t6Bzs5Oj6KiolNmzJiR803GTWTWAPIcK4KCgp6ZPn36V5JHl19+uSdID8SuNGulXStCBNmqw6+ZfF1NfJPRhYP/FYmScDmfLK7JVL+eZElspfKyuItgDRDc9UIHn2QdhNGzLiQAzHA/cZr8yNq4mO5pbWlpmUbl0kMC8xYII7wHRwFWVVVZtnWAkAH5Iy78hjUBAUbxxNF7a6icuikNCSQ4nCIjI3fT5z68m4RMBNWn55QpU4qwrw8JjC563okEkgcJrT5Kbz8EGsoA70Td4Dm8GydYIS34jXdx3nB4+CZSyHY6woI+IXIroEbYkJ6e/pSDZNfp4MGDZ6DjEJF/bksJh/YH0mhsbOy14fLvI6LpU9r7N43U1NR/UbB8T0tL+1rFrR1dDOYJ2QHeUAIGUJaLslD0wH2tra3nESFjtXA9CYVLybrwJlKGIHEDOROBV9KnOTAw0AXjFCSArqXnquiZd4nQF5DVmIG4laCAkEB5TZs2TauoqIB7UFPbLYPwYWGQcL+I4ug566yzziPCPyhE7kAgbSCVGlQ0NSaHcKtQww/Pzc1dTJpLPxGjh3bUn2oTgLanND/Bt99U+PPYdFzlblJCFYBLxxr8/PyOHcwyadKkfxr/nzNnjvHS3dqJfv0x8RSEhkobtQ2nl19++cOSkpI1jkDkMlVLB5LsU0477bR7qbHlOEJ+CwsL1+Xn57slJSW9Ro3fpjRbaHIwqfutqYECW4dxcHZgLAGDuzzAO0Aaeh9ZIU/t37//ew5hWkubOQ4itUs8PDz2OUp+KysrLb5HskCyNRvbRwX8jUDmeoy0XIE1eHt7Z1Kf9oGfX4jcgdDc3BxAZmC7g2TXVFZWNrW3txezPbxsLfGkjcMdpFVXV18pLVdgDUFBQW1E5sHl5eWnCJE7CPr6+kICAwMPR0ZG7neQLDtXVVX9gPLcm5KS8qqNpd2VtPEETMmrq6sbkNYrsAZfX99isjZ3FhYWuguRO46b4aTc3NylDpRl+CH7IyIiXKjB29oqVl/SxM/F4Joa4BIIrCE4ONjF3d3d7huJEDljy5YtPyTt1GH228aofllZmVtycnI2Fn3YmhAijbwPC2caGxtlj3TBsAgNDR0oLy//kRC5Y5Ba0I4dO+ZPmzbt746SZzI3z83JyQlKSUl5T9NNK7MVYL5xc3OzVlRUFNzb25sgrVhgDVOmTHmivb09XIjcAUCEMJ1MsNiYmJgSR8lzU1NTZHh4uCk2NnaPLaZfLZ13cnIKo/pbKK1YYA1Tp07dTf06Szu6kEmI3J6xb9++m4jU8sLCwvY4Sp537tx5bWBgIDaBsslzOLE0G/uJgNBbWlr6pBULrIHaSCkpLbs1O984TIicQOa5B2nk2JPBYRaX1NTUeAcEBHQ6Ozu72mL6oY1j0ygsCiKNXJZ3CoYFCfo59fX1iULkdgwsU6+trU2fO3fuQ46S59bW1nlVVVVhpI0/Y6ubg2GJPrRybDdbVla2VuhKMByGhoZm5ubmnixEbsfo6ekJoRBB2mm1o+SZSDwJu83FxsYO2qrJiVWdIHHseEeCeLHQlWA4hIeHV5JGfpo959HhN80is9wtKioqLzg4eIuj5Lm6ujqstLQU+09X2WoeoI1jL25o5n19fV2aQDAM5syZ808S/EGikdsxqIIHQkNDixwpz1lZWddiL2cKT9ti+jHA2djYaNn9EIuCSBj70rVAoSyBNVA76X399dcfJoFvt35yhyfyioqKKxMTE99wMCsEJ71gwNAmLTJ1EANO