Название | Искусственный интеллект на пальцах: от пикселей до решений |
---|---|
Автор произведения | Андрей Васильевич Зубков |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2025 |
isbn |
Одним из самых продвинутых примеров является модель BERT, разработанная Google. Она помогает поиску учитывать не только отдельные слова, но и их взаимосвязь в предложении. Благодаря этому поиск стал более точным и полезным.
Кроме поисковых систем, нейросети анализируют текст в чат-ботах, системах перевода (например, Google Translate) и сервисах проверки грамматики.
Вывод
Распознавание лиц, объектов и текста это лишь малая часть того, что могут делать нейросети. Они помогают нам делать фотографии лучше, безопаснее ездить и быстрее находить нужную информацию. Эти технологии продолжают развиваться, а значит, в будущем их применение станет еще шире и интереснее.
Глава 3.1. Нейросети как математические функции
На первый взгляд, нейросети могут показаться чем-то сложным и загадочным. Но если упростить их суть, они работают как математические функции, которые преобразуют входные данные в выходные. Это похоже на то, как работает калькулятор: вы вводите числа, он производит операции, и в итоге выдаёт ответ. Только в случае нейросетей операции сложнее, а результат зависит от многослойных вычислений.
В этой главе мы разберёмся, как нейросети выполняют задачи классификации, регрессии и кластеризации, а также рассмотрим реальные примеры их применения.
Входные данные, операции и выходные данные
Любая нейросеть получает на вход данные. Это могут быть изображения, текст, звук или числовые показатели. Независимо от типа, все они превращаются в набор чисел, который затем проходит через слои нейросети.
Например, если нейросеть анализирует фотографию, она сначала преобразует изображение в массив чисел (матрицу пикселей). Затем эти числа проходят через математические операции складываются, умножаются, взвешиваются и на выходе получается предсказание. Если сеть обучена распознавать кошек и собак, то результатом работы будет, например, 90 вероятность, что на фото кошка, и 10 что собака.
Классификация: определение категорий
Классификация это один из наиболее распространённых видов задач для нейросетей. Она используется, когда данные нужно распределить по категориям. Примеры:
●
Определение спама в электронной почте (спамне спам)
●
Распознавание рукописного текста (цифры от 0 до 9)
●
Определение болезней по медицинским снимкам (здоровболен)
Как это работает? Представим, что у нас есть почтовый сервис, и мы хотим отличать спам от обычных писем. Входные данные текст письма, который преобразуется в числа (например, количество восклицательных знаков, ссылки и ключевые слова). Эти данные проходят через нейросеть, и она выдаёт результат: 95 вероятность, что письмо спам.
Регрессия: предсказание значений
Регрессия