Раневой процесс: нанобиотехнологии оптимизации. Коллектив авторов

Читать онлайн.
Название Раневой процесс: нанобиотехнологии оптимизации
Автор произведения Коллектив авторов
Жанр Медицина
Серия
Издательство Медицина
Год выпуска 2011
isbn 978-5-299-00509-7



Скачать книгу

вещество в виде наночастиц обладает свойствами, часто радикально отличными от их аналогов в виде макроскопических дисперсий или сплошных фаз, наноматериалы представляют собой уникальный класс веществ, на основе которых возможно создание новых фармакологически активных препаратов (Тюнин М. А., 2009).

      Многие авторы первое упоминание методов, которые впоследствии были названы нанотехнологией, связывают с известным выступлением в 1959 г. Ричарда Фейнмана «В том мире полно места» (англ. «There’s Plenty of Room at the Bottom») в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Р. Фейнман предположил, что механически возможно перемещать одиночные атомы. По крайней мере, такой процесс, по его мнению, не противоречил бы известным на тот день физическим законам. Им также было высказано следующее предположение: «По мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Все, с чем приходится встречаться в жизни, зависит от масштабных факторов».

      Впервые термин «нанотехнология» употребил в 1974 г. Норио Танигучи, профессор Токийского университета (Taniguchi N., 1974). Этим термином он назвал процесс разделения, сборки и изменения материалов путем воздействия на них одним атомом или одной молекулой. В 1980-е гг. данный термин в своих книгах использовал Эрик К. Дрекслер («Engines of Creation: The Coming Era of Nanotechnology» & «Nanosystems: Molecular Machinery, Manufacturing and Computation»). Центральное место в исследованиях К. Дрекслера занимали математические расчеты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

      В дальнейшем последовал ряд открытий, связанных с наночастицами углерода. В частности, в 1985 г. – открытие фуллерена С60 (H. Kroto (Англия), J. Hit, S. O’Brien, R. Curl, R. Smalley (США)),отмеченное Нобелевской премией по химии (1996 г.). В 1991 г. японский профессор Сумио Лиджима использовал фуллерены для создания углеродных трубок (или нанотрубок) диаметром 0,8 нм (рис. 1). В начале нового века – открытие графена (англ. graphene), который можно представить как одну плоскость графита, отделенную от объемного кристалла (А. К. Гейм и К. С. Новоселов – Нобелевская премия по физике, 2010 г.) (рис. 2). Как оказалось, графен обладает большой механической жесткостью и хорошей теплопроводностью. Высокая подвижность носителей заряда делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

      Рис. 1. Углеродная нанотрубка

      Рис. 2. Гексагональная кристаллическая решетка графена

      Перспективность и необходимость изучения и развития нанотехнологий в России закреплены на законодательном уровне. В соответствии с Распоряжением Правительства РФ от 17.11.2008 г. № 1662-р (ред. от 08.08.2009 г.) «О Концепции долгосрочного социально-экономического развития Российской Федерации на период до 2020 года» в ближайшее десятилетие ожидается переход развитых стран к формированию новой технологической