Случайный лес: Как приручить одну из самых мощных ML-моделей. Артем Демиденко

Читать онлайн.
Название Случайный лес: Как приручить одну из самых мощных ML-моделей
Автор произведения Артем Демиденко
Жанр
Серия
Издательство
Год выпуска 2025
isbn



Скачать книгу

на валидационных данных, стоит рассмотреть возможность снижения максимальной глубины, чтобы улучшить обобщающие способности нашего ансамбля.

      Итоговый анализ и оценка

      Наконец, после того как все деревья построены, каждый из них вносит свой вклад в общее предсказание через метод голосования (для классификации) или усреднения (для регрессии). Это позволяет не только повысить точность предсказаний, но и снизить дисперсию модели, поскольку ошибка отдельных деревьев часто компенсируется другими.

      В процессе итогового анализа полезно провести визуализацию каждого дерева и рассмотреть их структуру на предмет важности признаков. Это позволит не только понять, какие факторы влияют на предсказания, но и выявить возможные аномалии в данных.

      Таким образом, процесс построения деревьев в случайном лесу – это многоступенчатый и проницательный подход, включающий выбор данных, случайный отбор признаков, создание деревьев и их взаимодействие. Применяя эти методы на практике, вы сможете полноценно использовать мощные возможности случайного леса и получать качественные предсказания.

      Случайность в отборе признаков и подвыборок данных

      Метод случайных лесов отличается от многих других моделей машинного обучения благодаря своей стратегии выбора подвыборок данных и признаков. Сочетание случайности в этих процессах не только улучшает производительность модели, но и обеспечивает её устойчивость и надежность. Изучив принципы случайного выбора, вы сможете гораздо эффективнее использовать случайный лес для решения своих задач.

      Случайность в выборе подвыборок данных

      В процессе построения случайного леса каждое решающее дерево создается на основе бутстрэпинг-подвыборок. Это означает, что алгоритм случайным образом выбирает наблюдения из исходного набора данных с возвращением. При этом не все наблюдения будут включены в каждую подвыборку.

      Для понимания этого процесса, представьте, что у вас есть 1000 наблюдений. При создании одного решающего дерева из этих данных алгоритм может выбрать, например, 700 наблюдений, причем одни наблюдения могут повторяться, а другие – отсутствовать. Таким образом, у каждого решающего дерева будет своя уникальная подвыборка данных.

      Это создает "разнообразие" в обучении, так как каждое дерево изучает разные аспекты данных. Основная идея здесь заключается в снижении переобучения – когда модель слишком сильно подстраивается под конкретный набор данных. Благодаря случайности каждое дерево будет иметь своё "мнение", что в конечном итоге позволяет объединить результаты и улучшить общее предсказание.

      Отбор признаков: случайный подход

      Помимо случайного выбора наблюдений, ключевым аспектом работы случайного леса является случайная выборка признаков для каждого узла дерева. В стандартном решающем дереве для принятия решения на каждом узле используется весь набор признаков. Однако в случайном лесу используется лишь подмножество признаков, что значительно увеличивает степень случайности и улучшает разнообразие деревьев.

      Например, при наличии 10 признаков случайный