Data Science с нуля: Полное руководство для начинающих. Артем Демиденко

Читать онлайн.
Название Data Science с нуля: Полное руководство для начинающих
Автор произведения Артем Демиденко
Жанр
Серия
Издательство
Год выпуска 2025
isbn



Скачать книгу

с данными в Jupyter Notebook часто начинается с их загрузки. Для этого используются стандартные библиотеки, такие как `pandas`, которые позволяют импортировать данные из различных форматов: CSV, Excel и даже SQL-баз. import pandas as pd – этот простой код помогает подключить `pandas`, что открывает доступ ко множеству мощных инструментов для манипуляции данными. Например, можно загрузить таблицу данных из файла и сразу увидеть её структуру, что упрощает дальнейший анализ и манипуляции.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEEAgMFBgf/xAAYAQEBAQEBAAAAAAAAAAAAAAAAAQIDBP/aAAwDAQACEAMQAAAB8J72l7S581Q6HPOv6Dz/AKAuiyAImACUCUCQAAATEwSgSiQAAAAFAAAABAAAJRIEBaAAAAAAAAAAAAAAAACAAAAAAABACAC0AAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAA4F+tZjzfP6HPXr+g8/3y8LIAiYABrNjz9VfSU+ddTXjezXnOiOc6I5zojnOiOc6KOe6EnOdEc50RznRHOdEc50RznRHOdEc50RznRHOdEc50RznRHOdEc50Rz3RHOdEc50RznRHOdEc50RznRHOdEc50RznRHOdEc50RznRHOdEc50RznRHOdEc50Bz3QHPdAc90Bz3QHPdAc90Bzp6I5zojmukOa6I5zojnOiOc6I5zojnOiOc6I5zojnOiOc6I5zojnOiOc6I5zojnOiOc6I5zojnOiOc6I5zojnOiOc6I5zojnOiOc6I5zojnOiOc6Io2M650tvmtKercLt1kAAAADjWa1k83z79CXr9/gd8vCyAImAw8uXqXW6i07ggAEokAAAATAkAgkAAAKAAACAAAJgSICgUAAAAAAAAAEBQQAAAAAAAAAIARIRMAWgAAAAAAAAAAgAAAAAAAAAAAAAAAAHP4frBxuzxqEvqGOVgAAHGsV7B5uhfoS9fv8An/QF6JiwQTrz8qYekWQAAABMCUCQAAAJgCQAAAAFAAABAUEBUwJEgWgAAAAAgAKACAoAAAIAACggAAAQiQBElQksJEAAAAAAAAABAAAAAAAAAAAAAAAAAFK6PJ+rp8SX1AsAA41itZPN0L9CXreg8/6BL0TFInUcezy/TEgAAAAAAlEgAAAAEokEEgAAEkAAAABQExKABAWhAUCAoICgAgAKAAAACAoASAAAoAAIAAFIFJgJgSEAAAAAABAAAAAAAAAAAAAAAAAHF7Q5PW8l6xZCAcWzWsnm6F/ny9f0Hn/QJeiYqOD3vMx27UxYmCyiQAAAAACQAAAAJCASiQAAACKV2jqXxmgAoEoEwEiQFAACgQAFAAAABAUAECUAAAAAAAKCAARErYJQIgWgAAAAAAAgAAAAAAAAAAAAAAAAAHNr9rykvqxYBxbNayeb5/Q58vX9B5/0BeiYs0ci1nHQiYsAATAkKAAAABIAAAAAJIJiQAABGMyRlTtWZCUFAAAlEyAAqYICgBQBMSAoICggWhICgEwAAAgKAFBICgAAAiJEC0AAAAAAAAEAAAAAAAAAAAAAAAAAeY9PxDsZ0bwBxbNayeboX+fL1/Qef75eFnE6PM6sb4mLAAAEwJRKgAAAJgSAAAAACYCUSADETjkVt+awiZQAUAACUJJAFoIEoUJiAEwgKACAoAABMAAAIAFoQAAAACAAQlbCRAAAAAAAAQAAAAAAAAAAAAAAAABzelRK/W4vaAOLZrWTzfP6HPl6/f4HfLws4XV5XVjfBYAAAABKBIUAAACQAAAAJgJQSDRzb3K68e9lhny7ARMSAAoAACYJIAgLQQFCJgJIAAqYIAAACgAAAAAAAAAkBQAAAsRMAKAAAAAAAACAAAAAAAAAAAAAAAKN6iU+1xe0AcWzWsHm6F+hL1+/wO+XomLOH1eV1Y3CgQAAAABMedr0byiz1byg9W8pJ6p5m+ddhnnUgAAAOFR1n1c+THrFfdnWGzDYmMx5SvWvJrPVz5OT1byhfVvKD1bykHrHG7OaCpcBO+8m1n1jyfpJbAlAmBUwkmJhQDHg2egeIqbz9DfOtye+eQ6+ddhE50FAFDg3PrXgdOs/RHz+8vsnI6+NApX83Z6x5NZ6xyetmjy1epeTXPrHkx6x5MvrHkyeseT9DLbORL13k2s+sjz/AKHOoCgHna2s+reU3npBnQA0JveZ5ms+5fPJs+hPE9eXvsM86APL69Z9Y8mPWPJj1jyY9Y8nJ6tUt50AAAAAAo3qJT7XF7UBXEs1rJ5uhfoS9fv+f9BV6JhOH1eT1l3BAQAAAAB85+jfOemOeO3IAADf6fyLN+q5fP8A3vHtsROdANW3zFnk9R6eAJ631HzL6bx7ZZY5c96vlf1T5X15B15gAAAem9n4v2XDvkhjWv5h6zx3bkHTm9b5KznX1Fhn5+4AALMEOfc+Z7xnSO/ELAAOv9D8j67h3GvG48ZR5fbjMHTmAA6vKS/T7fy/6Zw7U/mv0v5p0wHTn671nk/Wefu+V/VPles6R25AAAPonzv6Jz6dbyPrvI89+THo4PdeFzzr6vHN6Xn7gvzrl9Tl+nzOjzuifSB5vSPG3NryWt34hrIAFr2/z7LGvq7m9Lh3+W6N+j0+cLAAAPoXX5HX83oCUAAAABRvUSn2uL2oCuJZrWTzdC/Ql63oPP8AoC9BZwutyequ+BJQqUTIAAAA+c/RvnPTHPHblu9R5z6Zz6eWj1TnvwvE+q8/WfnDdp7cno/OTL9Wmnc83oAj5n7HwfXkMuvPF1uTK9v4joy/RsscvP3x8z6hZ5d6hZ5Hyn0/5h05h0x0+9R9tx6+XeoZ1yOuZ1OM8OvG1D0ecy6hyRZ7b0nzb6Nw7ZsWN5ImAtA894b13ke/AN49F6bV1/P3pU+yzfG+f+pYbzotGNvGer+YbxgO/Ftn6NjXnOl33Lt5zz30QnyXL1nS6c9PoDl1ofNPpfzTrzDpz9d6zyfrPP3fK/qnyvWdI7cuj6jgfQOPXzz0LG/PPQjz3ZsJXkfXeR1nyY9HAC19G+X9Tnv6Kxy49/nXL6nL9HmdHndGvpA83o4ngenzO/AN5nv9n0HHr5+e+xvxHnvrHG3j5/6Wx6yok5dPlujfo9PndDn9mPQPQOHfz70A8+9AK9glAAAAAAUb1Ep9ri9oBeJYrWU85Qv0Jet6Dz/fLxFnD6vK6q7ggUESgkgAAfOfo3znpjnjtyt/S/mn0vj1TDn0kHmPH/RvnPfiG8ez9L4/1/n7yc6a8dyT0ed2+J7/ADrL599V+bZtMdef0HseB995+4Z0BW+X/UPl/XkHXn6P23ifbcO4Y0A+eey+b9eYdeXc9Nh2eHf5Ou0u3F9B+fdzOvezjPDs17RrziSUF8/4b6t8368aI689nc8+l9r1fmrG/rM/L/R4161r2Y6ee8N63yXfgG8eu9Zyur5vQE0AABQ+afS/mnbiHTn671nk/Wefu+V/VPles6R25XvSeNZ17J41L7J40n0fp+V9Vx7PI+u8jZ5MejgNpqB6L2/yb2PLrwuX1OXvm6PO6NfSK1nleb0fOx6vM63J9ZnXrR5/QAAACfLdG/R6fOvUR7F45nXsXjh7Hq/OfX5vqhy6gAAAAAKN6iU+1xe0AcOzWsnnKF+hL1u/wO+XomLOH1eV1V3EJKJoIBEwJAA+dfRfnXTHOHblb+l/NPpfHqHPaYFD5x7PxnbkHTHp/Yea9L5+7xHr/mWs4jtytfS/ml/nv33mOTqmuUOvKfpfzP03Pfshx7SiSt8v+ofL+vIOvP0ftvB+34dtoxsVjyHnssfR51qrZr6fPgXHr1fH9XldeaYaz9MueO9n5+5jlnURlBLHIivZHhuD9W09MfLHvOXvHl3R52shZ1fofyf3nLrQ8l7jw+shvH0bqeW9T5vQEoKABQ+afS/mnbiHTn671nk/Wefu+V/VPles6R25HR9XnXg3vGb4N7wUvV0b3Lq8j67yNnkx6OD3vgvqXLp8vx9v4jeUw1ndpB0ed0ZfpHK6tTzej5iPV5nrfJdnOvoA8/oAAAA+W6N+j0+YdA573bGvCPdjwnr7nQzq8OfQAAAAABRvUSn2uL2gDh2a1k85Qv0Jet3+B3y9ExZwutyequ+BAJRIFAShEhHzn6N866Y5w7crf0v5h6/l09A8/jjfoqnmOBrOdc7ckx3pfWXWHm7+W8pYr+jiGshAAU26kfU9vmPUef0BLW+X/T/mHXkHXn6L2/ifb8O0DG3kvVfMd4rjvxAAAA2fUPlfsufT1GOTj1MciEwTUs/M9Z+mz839EelUbWdbOF1fM6z5Qejg9f5D3GN9j5h9Z8PjfnR242PpHy+zjX1F5fo8e3XcPgWdi/8AOdnTH1Zxuzy60Pmn0v5p15B05+u9Z5P1nn7vlf1T5XrOkduXa+gfOPXcevZcZjfZcYdlxrstzyPrvI6z5Mejg+pfLfqXLpY8Z7PHn0+Tuxx/RwCx0ed0ZfpA83o+bc/3PhvRwTDWff8Aa+Uem49fYuNON9jmcPzG8+y9J8m9anrBz6fLdG/R6fO7PG6UfR3GcO/ZcYdlxh2VO5KAAAAAAo3qBU7PG7IBxLNayecoXqMvW7/A75eiYs4XV5XVXcEAAAlE0AmBPzn6N856c+eOvIAAAy9HLy/oE7eHZ570Pziznjvxe68f9M59MMd7l00ZbINfzn6Z5XWfIjvxufSvlPvOXTtpnl0q/MPp/wAw68w68/Re18V7bh2TGON8DxHQ5/o4C1Z7Hs7J8/fU2pdUbh8yp+v8h6OC5TWfWMuF3fN6GOWBm1ycTwfs/Hd+OI3gAAWCPptDq+fu07md/NKH1Lw3bhxh0wAAL8uj6dT6HDtQ+afSvmvTAdOfrvWeT9Z5+75X9U+V6zpHbkAAA9f5D1+N+r8j67yPLp5Mejg+pfLfqXLpYHHro+c/TaG8/NG3V6ODo87oy/SB5vS8N7mLn5O9T5fvwgagACdvtc6tdQ8/f5dXsV/T5wsAAA9b6zyfrPP3DOgAAAAIo3qJU7PG7IBxLFewecoX6EvX7/A75eiYs4XV5XVXcEAAATAkUA8v6hZ457Jc+NeyHjXsh5K/3kadxnSYkr+U9nGp4zV37/TnzO9g59NjBLmwQ0OLvPOj2UWeQ6Pf2Swmcbr+R9nGs+On2WVnn/QGdK9nCXxj2sbx4zq99KGdAAV/J+0WeLe0mzzno2mXbj5P1tzMmdq1mDzXM9w1n51p+mNT5rb9+jy3odzOshKChJyeB7VufOdP0xc/N73uhwO9kxtEpavk/atZ8W9os4vaM6eO9is8W9os8W9oPFvaDxb2g8X2+yVxO2zfFvaN58X6/azQzUSONw/aNzxdr1RAzsBSuk8jy/oTefmmX0lZ4Hr+nZuncZ0B5DV7RrPi3tFni3tB4t7QeLe0HF7RjQKAACiEmAUb1Eqdni9oA4livYPOUL9GXrd/z/oC9CLOH1eV1TcAAAABMCQBUomAQAAAgE66bSAUBIMcpK+WcWa92Os3sM5cJ17rMc8M5QImMgDGUElc2bPPd+5yJzqDEyw1bbIZyuhnlZLJLhjshMoSsTAkGMxJIAUAAJBNQFlExBJAAoEBQAAAAAQAIhMUCgAAAAAAAgAAAAAAAAACAAAUb1Ep9ri9oA4dmtZs85Qv0M663oPP+gS7Eq4XV5XVNwAAAAAExIABKJQAQTEyRLEjLDZQSgSAAQTjlJhOOSY4bca02NJN869k0xZAEwxM8cdCYZLVmMzhNZte0SgnGQBhljlZkiZQISERkESYzGRExICgAAJhBMBMAExMAIFAAoAAAAAIEAImLQAAAAAAQAAAAAAAAABAAAAKN6gVO1xe0AcOzWsWedoX6E11vQef75eITh9XldRd8TCJgSAAAABMSAJiEyiJEgFNfB7Ws2WtnWxhlGUSUiQBjliZTAnXnKY6tmit2GzAy1pTZnRzLCNk1jOuDGwk1545kAxyxyGMyDEyaaVl/Py/qLJnHLOgAGOQYsjDPVtImJAAUAACUIlAkCJVABKQAFABAUAAAECESITFoAAAAAIAAAAACggKAiYQAAABQv0Cp2eN2RMDiWK9izztC/Qmut3/AD/oEvRMHD6nL6hvgQFAkAAACYWTESEyEJUwSa+6vZx/Q1LmpEZTnWuNo0t0robsUxZjXG4aZ2yaG6St5j1XjemO11vO+ozqMzNY5THL8/6bj9/P3rFbfx9GU4pYz1ymbAqaN2zJilyiCYY8Tt6mWqzjLSvYbBGaXCNgwnKBq2aLK1/jdizLLkdfNBQAUAAJAUASkJigBJCYUJJgoAFAAACQKRMLMAAAAACAAAAAABKFCEAAAAECjeolTs8bsgHDs1t9nnuV06MuHr+T6DeNthGbxepyenLZYTWSJAiQoBEWZREiUgQCkQkk1OGWJmhLMwJQMmMjVtg155TZiyRiylcPK+p52s2sN2SUr9PoTWDMa42VjG5WskVbcSxnT3JnljkpGojfV32ZQyjCNuop5XtdkTlSW/FewY546pbDXsgiVYZ67NujcSJ17FAABQAAAkBZRIAiYsCWQImCYAEBQAoEACAITFoAAAAIAAAAAEoUCQAAABEwAKN6iU+1xeyJgcKzosWedo3qE11vQef9AXQzwuryuqu7HJZgzGuc4slQ4+8emYOe88tY2MC5zrkzcnyOs+5oeEbx7q386H1PL5r6vOu8qWM6zx2JYmUNezgV0nzV15/Srfyr6VjV4Y3hVrfPemPpb5o1n6dlztHLp0MPnTry953Pk/vs67Zp59Mcs+Dc3t3zN0x9LtfLfp2dbeTPz6z2PW+cN5+kPm7N+j7fmavpmXzG7L9N0NnLeeMeWr1Or5vV6Y+lY/N1n0vL5kPpWfzLvR7xqy5dc9ezUbQYssDMAAAKETAJAAAiQAABEiEiAAAABQAIEAQmLQAAAQAAAAAFEJMAAAABAAFG7RKnZ43