Нейросети: создание и оптимизация будущего. Джеймс Девис

Читать онлайн.
Название Нейросети: создание и оптимизация будущего
Автор произведения Джеймс Девис
Жанр
Серия
Издательство
Год выпуска 2025
isbn



Скачать книгу

комбинациях.

      2. Тестирование и валидация:

      Тестирование и валидация являются ключевыми этапами в процессе обучения моделей машинного обучения. Они позволяют не только оценить качество модели, но и понять, как выбор гиперпараметров влияет на её производительность. Для этого данные обычно делятся на несколько частей: тренировочный, валидационный и тестовый наборы. Тренировочные данные используются для обучения модели, валидационные данные – для подбора гиперпараметров, а тестовый набор служит для окончательной оценки. Такой подход предотвращает утечку информации между этапами и позволяет объективно измерить обобщающую способность модели.

      Разделение данных на тренировочные, валидационные и тестовые наборы позволяет выделить независимые выборки для каждой цели. Тренировочный набор предназначен исключительно для обновления весов модели. Валидационный набор используется для оценки влияния гиперпараметров, таких как скорость обучения, момент или коэффициенты регуляризации. При этом модель подстраивается под тренировочные данные, но не обучается непосредственно на валидационных. Это предотвращает эффект переобучения, при котором модель запоминает данные вместо того, чтобы учиться их обобщать. Тестовый набор остаётся полностью изолированным от всех этапов обучения и подбора параметров, чтобы его использование отражало реальную производительность модели на невидимых данных.

      Кросс-валидация является эффективным методом для минимизации риска переобучения и получения стабильных оценок качества модели. В наиболее распространённой технике, (k)-кратной кросс-валидации, данные делятся на (k) равных частей. Каждая из них поочерёдно используется как валидационный набор, в то время как остальные служат тренировочным. Средняя производительность по всем итерациям позволяет получить более надёжную оценку качества модели, особенно в случае ограниченных объёмов данных. Такой подход уменьшает влияние случайных выбросов и дисбалансов, которые могут присутствовать при случайном разделении данных.

      Использование валидации и тестирования также помогает отслеживать ключевые метрики, такие как точность, полнота или F1-мера, и выявлять, где именно модель нуждается в улучшении. Например, если производительность на тренировочных данных значительно выше, чем на тестовых, это может свидетельствовать о переобучении. Если же точность на валидации существенно ниже, чем на тесте, это может указывать на неправильный подбор гиперпараметров или недостаточную сложность модели. Таким образом, корректное разделение данных и применение кросс-валидации создают основу для построения надёжных и обобщающих моделей.

      Давайте рассмотрим пример с использованием логистической регрессии на датасете `Breast Cancer` из библиотеки `sklearn`. Мы сравним результаты модели, обученной с использованием простого разделения на тренировочные и тестовые данные, с результатами, полученными при применении кросс-валидации. В качестве гиперпараметров мы будем использовать регуляризацию ((C)) для логистической регрессии.

      Пример с кодом

      ```python

      import numpy as np

      from sklearn.datasets import load_breast_cancer

      from sklearn.linear_model import LogisticRegression

      from sklearn.model_selection import train_test_split, cross_val_score

      from sklearn.metrics import accuracy_score

      # Загрузка данных

      data = load_breast_cancer()

      X,