Название | Геомониторинг в городском подземном строительстве |
---|---|
Автор произведения | Е. Ю. Куликова |
Жанр | Техническая литература |
Серия | |
Издательство | Техническая литература |
Год выпуска | 2016 |
isbn | 978-5-906858-00-9 |
Допущено Учебно-методическим советом вузов Российской Федерации по образованию в области горного дела в качестве учебного пособия для студентов вузов, обучающихся по направлению подготовки «Горное дело», по специальности 130406 «Шахтное и подземное строительство» государственных образовательных стандартов высшего профессионального образования (ГОС ВПО) и специальности 130403 (21.05.04) «Горное дело» федеральных государственных образовательных стандартов высшего образования (ФГОС ВПО (ВО)).
Рецензенты:
доктор технических наук, профессор В.М. Смирнов
доктор технических наук, профессор Г.С. Франкевич
Введение
Наблюдение – метод вполне достаточный для изучения только более простых явлений. Наблюдение собирает то, что ему предлагает природа. Опыт же берету природы то, что он хочет.
Нет большего врага прогнозов, чем самоуверенный оптимизм.
Никогда нельзя предсказывать будущее исходя из прошлого.
Любое подземное сооружение оказывает воздействие на окружающую среду, вызывая в ней те или иные изменения, угрожающие здоровью и жизнедеятельности людей и вызывающие негативные преобразования экологической системы Земли в целом. Существующая в настоящее время практика природоохранной деятельности основывается на нормировании воздействий и прогнозе изменений в окружающей природной среде.
Социально-экономические и градостроительные перспективы все в большей степени определяются санитарно-гигиеническим состоянием окружающей среды, возможностью биосферы компенсировать неблагоприятное воздействие техногенных факторов, в том числе связанных с интенсифицирующимся производством.
Санитарно-гигиеническое состояние окружающей среды нормируется установлением предельно допустимых концентраций (ПДК) вредных веществ, ориентировочных безопасных уровней воздействия (ОБУВ), ориентировочных допустимых норм (ОДУ), предельно допустимого сброса вредных веществ в водный объем, санитарных правил и норм и т. п. Перечисленные нормативы открывают практические возможности для оценки санитарно-гигиенического состояния среды при строительстве и эксплуатации любого промышленного объекта и перспективы оптимизации техногенной деятельности.
Прогнозирование занимает важное место в практике подземного строительства и является конечной целью проведения всех видов полевых, лабораторных и камеральных изысканий.
Инженерно-геологические прогнозы при проектировании и строительстве подземных сооружений имеют ряд особенностей по сравнению с другими видами техногенного воздействия на природу. Эти особенности связаны главным образом с ограниченностью объемов изысканий и получаемой информации. В этих условиях к прогнозируемым параметрам относятся состав и свойства породы, гидрогеологические условия по трассе подземного объекта, возможности развития неблагоприятных геомеханических процессов (горное давление, пучение пород, прорывы воды, плывунов и газа, изменение температурных условий и др.).
Из-за сложности и взаимосвязанности процессов, развивающихся между подземными объектами и окружающей средой, не все они поддаются точным прогнозам: для большинства из них возможна лишь оценка качественных изменений.
Следующим этапом после прогноза является моделирование, т. е. воспроизведение процессов и явлений на основе законов подобия. В практике городского подземного строительства для прогнозирования применяют все виды моделирования: натурное, лабораторное, логическое, математическое, знаковое.
Натурные модели позволяют воспроизвести не только состояние подземного объекта и окружающей среды, но и изменившиеся под воздействием сложных динамических нестационарных условий ситуации.
Лабораторные модели позволяют раздельно изучить те факторы, которые в природной обстановке действуют совместно.
Обработка результатов массовых испытаний свойств грунтов приводит к созданию статистических моделей, одной из разновидностей логических моделей.
Инженерно-геологические знаковые модели позволяют представить обобщенное графическое изображение геологических и гидрогеологических условий и геомеханических процессов на участке конкретного подземного объекта.
Составление специализированных моделей основано на выделении слабого звена в системе «подземное сооружение – породный массив», т. е. на выявлении факторов, оказывающих решающее влияние на выбор технического решения. Для каждого конкретного подземного сооружения необходима своя, специфическая информация о строении массива, вмещающего это сооружение, о характере миграции подземных вод к объекту, о температурных и электромагнитных полях и т. п. Поэтому исходные модели анализируют применительно к конкретным задачам проектирования и формируют их в частные модели, на которых необходимые элементы массива горных пород и несущих конструкций подземного