Решение парадокса сингулярности с позиции квантовой природы черных дыр. Валерий Жиглов

Читать онлайн.
Название Решение парадокса сингулярности с позиции квантовой природы черных дыр
Автор произведения Валерий Жиглов
Жанр
Серия
Издательство
Год выпуска 2024
isbn



Скачать книгу

что в двумерном пространстве горизонт событий – это окружность, а не сфера.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEEAgMFBgf/xAAaAQEAAwEBAQAAAAAAAAAAAAAAAQIDBAUG/9oADAMBAAIQAxAAAAHxgz9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMTNJI24UTAIJQJggAAmEpRMM5ZV3xmUXhIhKJhIBICYEokACAAglCUoACYQkAJTAlAlEhEhEhEgAglAlAlAlAyQJQmCJEIJQJQJQAQEoSISREZEYshjGZGDZExrbCNQtiEkwSCJIJRIEpRJKJMcM9efRkM+kAAAAAAAAAAAAAAAAAAAAAAAAABMTNJiY24YBAggAJgEwJQEwN2WOVOkIsAAIJRICQgAmJAImJEAAAAAACQCQAiQAAAAAIJAACAAETAAACAkAAAAASAETE10oX5pQlM4ySgSQSBMCZiZJgRr2a898hn1AAAAAAAAAAAAAAAAAAAAAAAAAAJhNJiY24UTAggAQEwJQJgJQN+UZZ9UJJ7dvs93HLxL2yrxL2w8S9sPEvbDxL2w8S9sPEz7UeKe1HintR4qPbDxL2w8S9sPEvbDxL2w8S9sPEvbDxL2w8S9sPEvbDxT2o8U9qPFPajxT2o8U9qPFR7YeJe2HiXth4mfajxT2o8U9qPFPajxUe2HiXth4l7YeJe2HiXth4l7YeJe2HiXth4l7YeJe2HintSPk+uxX6NUTExoF+YAJSgSCUSJgTOMkgjXswpvIz6gAAAAAAAAAAAAAAAAAAAAAAAAAAmkxMbcMRMQAQAglAlAAAs54Z59USmJ973eF3efnCoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5Vo36evZjlEqyF+aUCQSgSCUTKUSJiRMTKMM8M95GfUAAAAAAAAAAAAAAAAAAAAAAAAAAE0RMbcKEQEEwBAmAmATAAt54bc+uBE+87vC7vPzBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8r0b9PXtEZQmoRpykwSgZQgyQJmJlKJhKEpyxkjHLGm8jPqAAAAAAAAAAAAAAAAAAAAAAAAAACaImNeGImCAEAAQSAgAXdmvbl1wSt7ru8Lu8/KFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyvTv0dWyJTNKC/LKExKCZRJKBMxImJJRMpmAwzwpvkM+oAAAAAAAAAAAAAAAAAAAAAAAAAAJoxyx14YBETAiYRMAAESRIiSL23Vtz7YTKfcd3hd3n5QqHMmem8N1LW9K8d14jtCtQAAAAAAAAAABw5nuHDO4iYgcKZ7rwfsJm45Xm0+5cDsxXc8P0bW9OKUAAAAAAAAAAAAAAAAA+Wad2nq3RMFGJjTlTBCYEzjMzKJExImJJRMpmJIxyxz3yFOoAAAAAAAAAAAAAAAAAAAAAAAAAAJoxmNuGIlDFMIQQESlCEgiUCYkvbtO7PtEre37vC7vPyBU07tKfkn0L579C23z+de/8LE/Tr1XRTn6LzvEm3vXP6FaHG1rd14fqWn0iPJ1j1ryfcl0HnuQn3Dx1OZ96w4Na+heE9ZM33gPUy63iux59bu8n1Hj5e9ni9qmbzvohw63pfNWt3vkn1r5LOv0bTursr/I9YrBw/PJ96o+QPeuHtR13gfRTPceY9PWp57bM9x4H0yew0eTR7N5PsHUafExPvHlqlntFazWgQAAAAA+Wad2rq3iMoOeRpyzAiUSJhKZgTMEySJgZTCTGYz3yFOoAAAAAAAAAAAAAAAAAAAAAAAAAAJpETG3DBEETERAImJEAAABf36d+fbBK3t+5w+5z8gVNO7Sn5J6/yH0Pfo8tc9n8mrH13xV30Fc+DxL/ACLadn2nifbRlyehz+hSPmvqPL+p12y4V/lxHouF7POtOP432PkrafUPlv1T5nWvqMqN5Hjff/PvZ2t4D6h8x+nyqeB994GJ+k/MPe+FPovY5HXpgFYeT7HzS+3o/M/TvmN7+k2dvwyv1efN+kzx4nz/AOgfPr7/AEz5h73wx9B3ad1Mvmn1z5H9c0votGOXC7PG7M2+R/TPmf03XTzWXO6iez4f3PzqH135P9W+URHuPP3OXafSem896GmIUqAAAAEvlmrdq6d4iYTQxmL8kwTCYkAkCYmUhMokyRMoiWe8inUAAAAAAAAAAAAAAAAAAAAAAAAAAE0iJjXhiJgROMQBEwAABBKB0bFexn2wlF/bdzh9zDjCpo385Py/6Fq2662Pm3v+pCn5T6JxYryOR6W1NvP2bdlFL03F7MU+Zeo3XLaV/B/W/OVdTXxvTM+D472Pj7bfU/l3uq1abtHouTFfnP1Pida1vlv03ndQpfPfpnOT2/lf1DkRFvs83pRmKdXgrvY7WmuXyX6fzYWef1Okp8v+pef6UzV+efTOct2/lv03kos7ssq1+YfXPP8AatNrwnu/NVbO7QsI+VfS6HUvbg1fb+eqy8x6Xty3fJvqnBhlzOsl5n6Lp3RQKVAAAACXy3Vt1dO8JhPNF+QJhKCQJiQJTMSlMDKcZlEwpvkM+oAAAAAAAAAAAAAAAAAAAAAAAAAAJpiNeGImCBEQCAEZEARMAHSsaLGXdCS3tO5w+5hxhUAAAAAAAAAB5ryH0Ctpt3WndTEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAfLde3V09ERljM82C/GmJmAJRJKJAlMwTIJmJlCYz3yFOoAAAAAAAAAAAAAAAAAAAAAAAAABExNIiY14UBETEQIAEwETAAIOpY0b8u4mF/adzh9zDiCoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfLtW3X0dERMTPLGnGCJAmJEwJAmJmUxJMxMoJpvIz6gAAAAAAAAAAAAAAAAAAAAAAAAAETE0iJa8MQiEJhCAARMAACJHUsV7OXeiS3su5wu7hxhWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl8u17dfR0RjnjM8ojTjlEoSAkIkkCYSmYlKYylExOe8inUAAAAAAAAAAAAAAAAAAAAAAAAAAiYmkRMa8KMoMYmIhEwAICYmACYDq2a9nLvhKLew7nD7mPEFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHy7DZh09ERlityRpxJxmYSBEkokEkwSklKYkTE03kU6gAAAAAAAAAAAAAAAAAAAAAAAAAETE0xiY14ZnETjtwhrTCETAAAhIiYOtbqXMu+IyiL+v7nD6uPFvfNu9N/VvDevitp8z9NNvTPG+oitp4rObeycHy59GU/nsR9Oc/iI9W+f+gmfQPK9usX3zD6Bab7xupPt1L57D6e5nFR614T16Lj5p6WbemeN9TFbJXrFh8z9Ne/pnkeYfQWvZXM8z2FrxTiLj5j6O9/VvH+wio8bD2THJUw80t6h5rz9p+itXArHpHj7Fp9Q8j6qK7HgenNvVub4uH0ZT5CPRvHddPaeQ9eqPGRPs0TFQAAPmGGePT0xjninjoacSSYTEgCYyBEkxMJnGZnJEiYU3yFOoAAAAAAAAAAAAAAAAAAAAAAAAABExNMYmNeFE4xGe3RmtjjarIxiYQAnGSAAde3UuZd6JiL+u7nD7mPF8r+jfOfUX28l9L4Xqor8p+hfPO7a/q7VTo54eI26tt9uz4j2/iD6d8k+t/JIfVOF3eFXPh+y8H2tL+o2btOOfyb618k+gba8/RXsRPtfkn1v5JEfU/Ed2qjn++8D75X5T9B+fdy2vqrVPpZ8wVfKPovzr6LrvR8z6bzJ9GieTnj5C/3fnuu/1vXE44fJ/qfyv2mu/ivrfA9FGdX5r7ilF7fe+b/SJzcXtcSkXPA++8DfT6J8s+k/N5n6ttic8PlP0PwXr9N/Pdzh5J9J1vD++rlQ+b+48bbT6fkZ4VbQU/mvuefbfp9r519FZBSoAHzHHKOnpjHKFuIlpwRMZSQCYyGU4yiEwTAmYmUzjkJxyp0SKdQAAAAAAAAAAAAAAAAAAAAAAAAACJiaYwnTgxiREwLM1r69DGzXUxIGWIIkA692ldy9CExFvW9zh9XHi+Y/SPK+ktr0yvnl8v8Aovmevrr2dHH69KeZ22ddtOn4n1nNl7T5J9B4MPY8Htcqufn/AHHl+te1q55zt0r8u+teJ9be3ndHQ1p9T8j+o+Rq79Lsc1Xie+8l6KY+Z/RPNdadOzX5HXrl0TRSPl/0XzPo9dafmvT8w9l5+/QpS34z6R5xbV6XyPo5r8x+s+I9da1zXs4udNFvPoy+U/RuHvvp6Tkeb9BWt/wPrfO2v775Z9CyrS1v8vmjyH0zn9ZPge3WvTbynrrXDPS/Mfq/JiOpt8l01erFSpWNdnfdl8o+mecv309EMsQAPmMS6erGMsU8WDTgEyTGQzZ2Ya5iAQlEkzCWQIzwzp0SKdQAAAAAAAAAAAAAAAAAAAAAAAAACJiaYRMacCJgQDbqRPTp7N1rc/DdqUhMQiYkA7F2ldy74jLGL+t7nE7ePEFYAAAAAAAACQQAAAAAAAAAAAAAAAYZjm9ImUSiOb0iZCIAAAAAAAAAAA+ZRMdHUwzwm3FiWnnxLKUZznaJw21IlMISQZIkkSmYkjPDOnRIp1AAAAAAAAAAAAAAAAAAAAAAAAAAMcommBGnBCYECQHQ52cWt1uhW1rTjZhSIEAOzcp3cu+ImI09b2+J28eEKwwz8BN+va1ejs871cN8R5zq+G9ta+XLy83M/Q+B6v5rSPX7al2a8T0fzb6pM+Yz4fYWu493n1z5c3/n1tPqnJ6fJpnbuZkcLXa1zfnen+a/T7RR4/l/arU5r1E+s85635REe1tXfl8vqXmvS/LU/TKHV4NaT6TwftZmty/IfUpnzfbn5sfVa2fzSsenvXr0187Ymwmjz/S/LJv76x1aEZ8mz5zszp1+D1fnp9StRNMQg4WnhX07m7vYxXn9Lk9aICIAAAA+ZxLo6scc8VuIlt585RttE7sqtmnGGUyiZSiRljJKBkJM8MqdGQp1AAAAAAAAAAAAAAAAAAAAAAAAAAImJprGnAgIAiYEShvvcq9OmFfo09M68Z45oSOxdp3Me9Ew09Z2+J28eEKxq+S/XflGm/025zOnXAKvl/rfJdvXo28H2ni5j6f80+l/NKR17Vm7MfPvqnyv6pL5/wBjj9hb1AywfP8A6Bz50853/FfSdAjLPk69mu2ni/p/zD6fd5nid/ya/Qsb9Eva/KPq/wAoo9hwfeWpz1/J/rXyVp7nleu4MV5He4Pqpnwv0/5X9UmI+SfWPk8W9l5L33z2z62xyywCFX5Z9T+Wab/XJiaYfPuryo06O34v6d8xl9amJy5wh8473Kvbb+wGOAAAAAAHzNLo68cc4W4mc7OjzY3xZ0ro5mWOOhExCYkTCUzEgEomTZr2U6JFOoAAAAAAAAAAAAAAAAAAAAAAAAABjlE01jTgiJgARMAiJTEHYw5/dvfjaehSvlglnPYuU7mHexyiL+r7fF7WXEFYcDvpt4P1HS1zPJ6u9FfmHrPRrX855T6cKvz/AOlIjzFrukfLPpNpM/POp68kKZ8ny3v9dr0OmRXjeb97rm1HnejRHzD33RWn5b9A6Q8ZV96TV+afVUOX1CM6vzH6wnTl8P2BX577/MeI6no9afLz6jMeO9iiPH9zoxLl9giOX87+sJvV35op886XsVr8r579XFW0VzCFLxH0Ra/GdPaitaIqEAAAAPmkxPR1xEluVvxt9nlbeV0uDntApVMCUSJiRMTJMSJjKUbNW2nRIp1AAAAAAAAAAAAAAAAAAAAAAAAAAMcsZphExpwImABAImIkELtJFvS8mza2tw8bGq2XVuVLfH6MCL+r7XF7eXDArAABimchEEYmYAAAACYBJAAAAAADHIAAAAAACQQAAMJmchEAAAGvOUiFK756LX6l7zHp0BWoA